# NOT RUN {
data(algdat.pfull)
## Get an initial partition
set.seed(1)
initcds <- algdat.pfull$cdmat[,sample(1:ncol(algdat.pfull$cdmat), 1)]
## 25 precinct, three districts - no pop constraint ##
alg_253 <- redist.mcmc(adjobj = algdat.pfull$adjlist,
popvec = algdat.pfull$precinct.data$pop,
initcds = initcds,nsims = 10000)
## Get Republican Dissimilarity Index from simulations
rep_dmi_253 <- redist.segcalc(alg_253,
algdat.pfull$precinct.data$repvote,
algdat.pfull$precinct.data$pop)
## Generate diagnostic plots
redist.diagplot(rep_dmi_253, plot = "trace")
redist.diagplot(rep_dmi_253, plot = "autocorr")
redist.diagplot(rep_dmi_253, plot = "densplot")
redist.diagplot(rep_dmi_253, plot = "mean")
## Gelman Rubin needs two chains, so we run a second
alg_253_2 <- redist.mcmc(adjobj = algdat.pfull$adjlist,
popvec = algdat.pfull$precinct.data$pop,
initcds = initcds,nsims = 10000)
rep_dmi_253_2 <- redist.segcalc(alg_253_2,
algdat.pfull$precinct.data$repvote,
algdat.pfull$precinct.data$pop)
## Make a list out of the objects:
rep_dmi_253_list <- list(rep_dmi_253, rep_dmi_253_2)
## Generate Gelman Rubin diagnostic plot
redist.diagplot(sumstat = rep_dmi_253_list, plot = 'gelmanrubin')
# }
Run the code above in your browser using DataLab