Learn R Programming

refund (version 0.1-37)

plot.fosr.vs: Plot for Function-on Scalar Regression with variable selection

Description

Given a "fosr.vs" object, produces a figure of estimated coefficient functions.

Usage

# S3 method for fosr.vs
plot(x, ...)

Value

a figure of estimated coefficient functions.

Arguments

x

an object of class "fosr.vs".

...

additional arguments.

Author

Yakuan Chen yc2641@cumc.columbia.edu

See Also

fosr.vs

Examples

Run this code
if (FALSE) {
I = 100
p = 20
D = 50
grid = seq(0, 1, length = D)

beta.true = matrix(0, p, D)
beta.true[1,] = sin(2*grid*pi)
beta.true[2,] = cos(2*grid*pi)
beta.true[3,] = 2

psi.true = matrix(NA, 2, D)
psi.true[1,] = sin(4*grid*pi)
psi.true[2,] = cos(4*grid*pi)
lambda = c(3,1)

set.seed(100)

X = matrix(rnorm(I*p), I, p)
C = cbind(rnorm(I, mean = 0, sd = lambda[1]), rnorm(I, mean = 0, sd = lambda[2]))

fixef = X%*%beta.true
pcaef = C %*% psi.true
error = matrix(rnorm(I*D), I, D)

Yi.true = fixef
Yi.pca = fixef + pcaef
Yi.obs = fixef + pcaef + error

data = as.data.frame(X)
data$Y = Yi.obs
fit.mcp = fosr.vs(Y~., data = data[1:80,], method="grMCP")
plot(fit.mcp)
}


Run the code above in your browser using DataLab