data("SVM_Benchmarking_Classification")
## 21 data sets
names(SVM_Benchmarking_Classification)
## 17 methods
relation_domain(SVM_Benchmarking_Classification)
## select weak orders
weak_orders <-
Filter(relation_is_weak_order, SVM_Benchmarking_Classification)
## only the artifical data sets yield weak orders
names(weak_orders)
## visualize them using Hasse diagrams
if(require("Rgraphviz")) plot(weak_orders)
## Same for regression:
data("SVM_Benchmarking_Regression")
## 12 data sets
names(SVM_Benchmarking_Regression)
## 10 methods
relation_domain(SVM_Benchmarking_Regression)
## select weak orders
weak_orders <-
Filter(relation_is_weak_order, SVM_Benchmarking_Regression)
## only two of the artifical data sets yield weak orders
names(weak_orders)
## visualize them using Hasse diagrams
if(require("Rgraphviz")) plot(weak_orders)
## Consensus solutions:
data("SVM_Benchmarking_Classification_Consensus")
data("SVM_Benchmarking_Regression_Consensus")
## The solutions for the three families are not unique
print(SVM_Benchmarking_Classification_Consensus)
print(SVM_Benchmarking_Regression_Consensus)
## visualize the consensus weak orders
classW <- SVM_Benchmarking_Classification_Consensus$W
regrW <- SVM_Benchmarking_Regression_Consensus$W
if(require("Rgraphviz")) {
plot(classW)
plot(regrW)
}
## in tabular style:
ranking <- function(x) rev(names(sort(relation_class_ids(x))))
sapply(classW, ranking)
sapply(regrW, ranking)
## (prettier and more informative:)
relation_classes(classW[[1L]])
Run the code above in your browser using DataLab