Learn R Programming

reliaR (version 0.01)

InvGenExpEsurvival: Survival related functions for the Inverse Generalized Exponential(IGE) distribution

Description

Conditional reliability function (crf), hazard function, hazard rate average (HRA) and survival function for the Inverse Generalized Exponential(IGE) distribution with shape parameter alpha and scale parameter lambda.

Usage

crf.inv.genexp(x, t = 0, alpha, lambda) hinv.genexp(x, alpha, lambda) hra.inv.genexp(x, alpha, lambda) sinv.genexp(x, alpha, lambda)

Arguments

x
vector of quantiles.
alpha
shape parameter.
lambda
scale parameter.
t
age component.

Value

crf.inv.genexp gives the conditional reliability function (crf), hinv.genexp gives the hazard function, hra.inv.genexp gives the hazard rate average (HRA) function, and sinv.genexp gives the survival function for the Inverse Generalized Exponential(IGE) distribution.

References

Gupta, R. D. and Kundu, D. (2001). Exponentiated exponential family; an alternative to gamma and Weibull distributions, Biometrical Journal, 43(1), 117-130.

Gupta, R.D. and Kundu, D., (2007). Generalized exponential distribution: Existing results and some recent development, Journal of Statistical Planning and Inference. 137, 3537-3547.

See Also

dinv.genexp for other Inverse Generalized Exponential(IGE) distribution related functions;

Examples

Run this code
## load data set
data(repairtimes)
## Maximum Likelihood(ML) Estimates of alpha & lambda for the data(repairtimes)
## Estimates of alpha & lambda using 'maxLik' package
## alpha.est = 1.097807, lambda.est = 1.206889

## Reliability indicators for data(repairtimes):

## Reliability function
sinv.genexp(repairtimes, 1.097807, 1.206889)

## Hazard function
hinv.genexp(repairtimes, 1.097807, 1.206889)

## hazard rate average(hra)
hra.inv.genexp(repairtimes, 1.097807, 1.206889)

## Conditional reliability function (age component=0)
crf.inv.genexp(repairtimes, 0.00, 1.097807, 1.206889)

## Conditional reliability function (age component=3.0)
crf.inv.genexp(repairtimes, 3.0, 1.097807, 1.206889)

Run the code above in your browser using DataLab