Learn R Programming

reliaR (version 0.01)

abic.chen: Akaike information criterion (AIC) and Bayesian information criterion (BIC) for a sample from Chen distribution

Description

The function abic.chen() gives the loglikelihood, AIC and BIC values assuming Chen distribution with parameters beta and lambda. The function is based on the invariance property of the MLE.

Usage

abic.chen(x, beta.est, lambda.est)

Arguments

x
vector of observations
beta.est
estimate of the parameter beta
lambda.est
estimate of the parameter lambda

Value

The function abic.chen() gives the loglikelihood, AIC and BIC values.

References

Akaike, H. (1978). A new look at the Bayes procedure, Biometrika, 65, 53-59.

Claeskens, G. and Hjort, N. L. (2008). Model Selection and Model Averaging, Cambridge University Press, London.

Konishi., S. and Kitagawa, G.(2008). Information Criteria and Statistical Modeling, Springer Science+Business Media, LLC.

Schwarz, S. (1978). Estimating the dimension of the model, Annals of Statistics, 6, 461-464.

Spiegelhalter, D. J., Best, N. G., Carlin, B. P. and van der Linde, A. (2002). Bayesian measures of complexity and fit, Journal of the Royal Statistical Society Series B 64, 1-34.

See Also

pp.chen for PP plot and qq.chen for QQ plot

Examples

Run this code
## Load data sets

data(sys2)
## Maximum Likelihood(ML) Estimates of beta & lambda for the data(sys2)
## beta.est = 0.262282404, lambda.est = 0.007282371

## Values of AIC, BIC and LogLik for the data(sys2) 
abic.chen(sys2, 0.262282404, 0.007282371)

Run the code above in your browser using DataLab