Learn R Programming

reliaR (version 0.01)

abic.expo.weibull: Akaike information criterion (AIC) and Bayesian information criterion (BIC) for Exponentiated Weibull(EW) distribution

Description

The function abic.expo.weibull() gives the loglikelihood, AIC and BIC values assuming an Exponentiated Weibull(EW) distribution with parameters alpha and theta.

Usage

abic.expo.weibull(x, alpha.est, theta.est)

Arguments

x
vector of observations
alpha.est
estimate of the parameter alpha
theta.est
estimate of the parameter theta

Value

The function abic.expo.weibull() gives the loglikelihood, AIC and BIC values.

References

Akaike, H. (1978). A new look at the Bayes procedure, Biometrika, 65, 53-59.

Claeskens, G. and Hjort, N. L. (2008). Model Selection and Model Averaging, Cambridge University Press, London.

Konishi., S. and Kitagawa, G.(2008). Information Criteria and Statistical Modeling, Springer Science+Business Media, LLC.

Schwarz, S. (1978). Estimating the dimension of the model, Annals of Statistics, 6, 461-464.

Spiegelhalter, D. J., Best, N. G., Carlin, B. P. and van der Linde, A. (2002). Bayesian measures of complexity and fit, Journal of the Royal Statistical Society Series B 64, 1-34.

See Also

pp.expo.weibull for PP plot and qq.expo.weibull for QQ plot

Examples

Run this code
## Load data sets
data(stress)
## Maximum Likelihood(ML) Estimates of alpha & theta for the data(stress)
## Estimates of alpha & theta using 'maxLik' package
## alpha.est =1.026465, theta.est = 7.824943

## Values of AIC, BIC and LogLik for the data(stress)
abic.expo.weibull(stress, 1.026465, 7.824943)

Run the code above in your browser using DataLab