Learn R Programming

reliaR (version 0.01)

ks.burrX: Test of Kolmogorov-Smirnov for the BurrX distribution

Description

The function ks.burrX() gives the values for the KS test assuming a BurrX with shape parameter alpha and scale parameter lambda. In addition, optionally, this function allows one to show a comparative graph between the empirical and theoretical cdfs for a specified data set.

Usage

ks.burrX(x, alpha.est, lambda.est, alternative = c("less", "two.sided", "greater"), plot = FALSE, ...)

Arguments

x
vector of observations.
alpha.est
estimate of the parameter alpha
lambda.est
estimate of the parameter lambda
alternative
indicates the alternative hypothesis and must be one of "two.sided" (default), "less", or "greater".
plot
Logical; if TRUE, the cdf plot is provided.
...
additional arguments to be passed to the underlying plot function.

Value

ks.burrX() carries out the KS test for the BurrX

Details

The Kolmogorov-Smirnov test is a goodness-of-fit technique based on the maximum distance between the empirical and theoretical cdfs.

References

Kundu, D., and Raqab, M.Z. (2005). Generalized Rayleigh Distribution: Different Methods of Estimation, Computational Statistics and Data Analysis, 49, 187-200.

Surles, J.G., and Padgett, W.J. (2005). Some properties of a scaled Burr type X distribution, Journal of Statistical Planning and Inference, 128, 271-280.

Raqab, M.Z., and Kundu, D. (2006). Burr Type X distribution: revisited, Journal of Probability and Statistical Sciences, 4(2), 179-193.

See Also

pp.burrX for PP plot and qq.burrX for QQ plot

Examples

Run this code
## Load data sets
data(bearings)
## Maximum Likelihood(ML) Estimates of alpha & lambda for the data(bearings)
## Estimates of alpha & lambda using 'maxLik' package
## alpha.est = 1.1989515, lambda.est = 0.0130847

ks.burrX(bearings, 1.1989515, 0.0130847, alternative = "two.sided", plot = TRUE)

Run the code above in your browser using DataLab