library(reporter)
library(magrittr)
# Create temp file path
tmp <- file.path(tempdir(), "mtcars.txt")
#Subset cars data
dat <- mtcars[1:10, 1:7]
# Calculate means for all columns
dat_sum <- data.frame(all_cars = "All cars average", as.list(sapply(dat, mean)),
stringsAsFactors = FALSE)
# Get vehicle names into first column
dat_mod <- data.frame(vehicle = rownames(dat), dat, stringsAsFactors = FALSE)
# Create table for averages
tbl1 <- create_table(dat_sum) %>%
titles("Table 1.0", "MTCARS Sample Data") %>%
column_defaults(width = .5) %>%
define(all_cars, label = "", width = 2) %>%
define(mpg, format = "%.1f") %>%
define(disp, format = "%.1f") %>%
define(hp, format = "%.0f") %>%
define(qsec, format = "%.2f")
# Create table for modified data
tbl2 <- create_table(dat_mod, headerless = TRUE) %>%
column_defaults(width = .5) %>%
define(vehicle, width = 2)
# Create the report object
rpt <- create_report(tmp) %>%
add_content(tbl1, align = "left", page_break = FALSE) %>%
add_content(tbl2, align = "left")
# Write the report to the file system
write_report(rpt)
# Write report to console
writeLines(readLines(tmp, encoding = "UTF-8"))
# Table 1.0
# MTCARS Sample Data
#
# mpg cyl disp hp drat wt qsec
# -------------------------------------------------------------------------
# All cars average 20.4 5.8 208.6 123 3.538 3.128 18.58
#
# Mazda RX4 21 6 160 110 3.9 2.62 16.46
# Mazda RX4 Wag 21 6 160 110 3.9 2.875 17.02
# Datsun 710 22.8 4 108 93 3.85 2.32 18.61
# Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44
# Hornet Sportabout 18.7 8 360 175 3.15 3.44 17.02
# Valiant 18.1 6 225 105 2.76 3.46 20.22
# Duster 360 14.3 8 360 245 3.21 3.57 15.84
# Merc 240D 24.4 4 146.7 62 3.69 3.19 20
# Merc 230 22.8 4 140.8 95 3.92 3.15 22.9
# Merc 280 19.2 6 167.6 123 3.92 3.44 18.3
#
Run the code above in your browser using DataLab