ExpData <- reproducer::KitchenhamMadeyskiBrereton.ExpData
# Extract the experiment basic statics
S1data <- subset(ExpData, ExpData == "S1")
# Use the descriptive data to construct effect size
S1EffectSizes <- reproducer::PrepareForMetaAnalysisGtoR(
S1data$Mc, S1data$Mt, S1data$SDc, S1data$SDt, S1data$Nc, S1data$Nt
)
# Do a random effect meta-analysis of the transformed r_pbs effect size
S1MA <- metafor::rma(S1EffectSizes$zr, S1EffectSizes$vi)
# Extract summary statistics from meta-analysis results and transform back to Hg scale
S1MAStats <- reproducer::ExtractMAStatistics(S1MA, sum(S1data$Nc), sum(S1data$Nt), TRUE, "d", 4)
# mean pvalue UB LB QE QEp
# 1 0.6658 0.002069 1.122 0.2384 4 0.41
ExpData <- reproducer::KitchenhamMadeyskiBrereton.ExpData
# Extract the experiment basic statics
S1data <- subset(ExpData, ExpData == "S1")
# Use the descriptive data to construct effect size
S1EffectSizes <- reproducer::PrepareForMetaAnalysisGtoR(
S1data$Mc, S1data$Mt, S1data$SDc, S1data$SDt, S1data$Nc, S1data$Nt
)
# Do a random effect meta-analysis of the transformed r_pbs effect size
S1MA <- metafor::rma(S1EffectSizes$zr, S1EffectSizes$vi)
# Extract summary statistics from meta-analysis results and transform back to Hg scale
ExtractMAStatistics(S1MA, sum(S1data$Nc), sum(S1data$Nt), TRUE, "d", 4)
# mean pvalue UB LB QE QEp
# 1 0.6658 0.002069 1.122 0.2384 4 0.41
ExtractMAStatistics(S1MA, sum(S1data$Nc), sum(S1data$Nt), FALSE, "d", 4)
# A tibble: 1 x 6
# mean pvalue UB LB QE QEp
#
# 1 0.327 0.00207 0.535 0.119 4 0.41
Run the code above in your browser using DataLab