ShortExperimentNames <- c("E1", "E2", "E3", "E4")
FullExperimentNames <- c("EUBAS", "R1UCLM", "R2UCLM", "R3UCLM")
Metrics <- c("Comprehension", "Modification")
Groups <- c("A", "B", "C", "D")
Type <- c(rep("4G", 4))
StudyID <- "S2"
Control <- "SC"
ReshapedData <- ExtractExperimentData(
KitchenhamEtAl.CorrelationsAmongParticipants.Scanniello14TOSEM,
ExperimentNames = FullExperimentNames, idvar = "ParticipantID", timevar = "Period",
ConvertToWide = TRUE
)
NewTable <- ConstructLevel1ExperimentRData(
ReshapedData, StudyID, ShortExperimentNames, Groups,
Metrics, Type, Control
)
resRe <- lme4::lmer(r ~ (1 | Id), data = NewTable)
summary(resRe)
# Linear mixed model fit by REML ['lmerMod']
# Formula: r ~ (1 | Id)
# REML criterion at convergence: 47.8
# Scaled residuals:
# Min 1Q Median 3Q Max
# -1.4382 -0.9691 0.2190 0.8649 1.4761
#
# Random effects:
# Groups Name Variance Std.Dev.
# Id (Intercept) 0.03978 0.1994
# Residual 0.20974 0.4580
# Number of obs: 32, groups: Id, 16
#
# Fixed effects:
# Estimate Std. Error t value
# (Intercept) 0.06175 0.09508 0.649
# N=length(NewTable$r)
ExtractSummaryStatisticsRandomizedExp(lmeRA = resRe, N = 32, alpha = 0.05)
# N Mean SE LowerBound UpperBound
# 1 32 0.06175 0.09508 -0.1319 0.2554
Run the code above in your browser using DataLab