as.data.frame(
RandomizedBlocksExperimentSimulations(
mean = 0, sd = 1, diff = 0.5, N = 10, reps = 50, type = "n",
alpha = 0.05, Blockmean = 0.5, BlockStdAdj = 0, StdAdj = 0, seed = 123,
AlwaysTwoSidedTests = FALSE))
# phat varphat sigphat emp.phat.var d vard sigd emp.d.var
#1 0.64415 0.008271389 0.45 0.005888917 0.2883 0.0340919 0.41 0.02355567
# StdES ES Var emp.StdESvar MedDiff tpower
#1 0.5413961 0.5264245 0.9904726 0.08811262 0.5538213 0.46
#as.data.frame(
# RandomizedBlocksExperimentSimulations(
# mean = 0, sd = 1, diff = 0.5, N = 10, reps = 500, type = "n",
# alpha = 0.05, Blockmean = 0.5, BlockStdAdj = 0, StdAdj = 0, seed = 123,
# AlwaysTwoSidedTests = FALSE))
# phat varphat sigphat emp.phat.var d vard sigd emp.d.var
# 1 0.63967 0.008322856 0.436 0.007728698 0.27934 0.03430328 0.416 0.03091479
# StdES ES Var emp.StdESvar MedDiff
# 1 0.5130732 0.5029075 1.001602 0.1116687 0.5110203
# tpower
# 1 0.45
#as.data.frame(
# RandomizedBlocksExperimentSimulations(
# mean = 0, sd = 1, diff = 0.5, N = 10, reps = 500, type = "n",
# alpha = 0.05, Blockmean = 0.5, BlockStdAdj = 0, StdAdj = 0, seed = 123,
# AlwaysTwoSidedTests = TRUE))
# phat varphat sigphat emp.phat.var d vard sigd
# 1 0.63967 0.008322856 0.326 0.007728698 0.27934 0.03430328 0.282
# emp.d.var StdES ES Var
# 1 0.03091479 0.5130732 0.5029075 1.001602
# emp.StdESvar MedDiff tpower
# 1 0.1116687 0.5110203 0.334
#RandomizedBlocksExperimentSimulations(
# mean = 0, sd = 1, diff = 0.5, N = 10, reps = 10, type = "n", alpha = 0.05,
#Blockmean = 0.5, BlockStdAdj = 0, StdAdj = 0, seed = 123, returnData = TRUE)
# A tibble: 10 x 6
# Cliffd PHat StdES CliffdSig PHatSig ESSig
#
# 1 0.58 0.79 1.06 1 1 1
# 2 0.21 0.605 0.383 0 0 0
# 3 0.37 0.685 0.761 1 1 1
# 4 0.44 0.72 0.821 1 1 1
# 5 0.13 0.565 0.240 0 0 0
# 6 0.16 0.58 0.222 0 0 0
# 7 0.38 0.69 0.580 1 1 1
# 8 0.48 0.74 0.882 1 1 1
# 9 0.11 0.555 0.181 0 0 0
# 10 -0.03 0.485 0.124 0 0 0
Run the code above in your browser using DataLab