Learn R Programming

reproducer (version 0.5.2)

RandomizedDesignEffectSizes: RandomizedDesignEffectSizes

Description

This function creates the theoretical effect sizes for data from one of four different distributions for specified parameter values for the distribution specified by the type parameter. It assumes there are two samples, one corresponding to a control group and the other to the treatment group. It returns the theoretical effect sizes for a fully randomized experiment.

Usage

RandomizedDesignEffectSizes(m1, std1, m2, std2, type = "n")

Value

dataframe containing the expected values of the unstandardized mean difference effect size, the pooled witjin group variance, the standardized mean difference effect size and the point bi-serial correlation.

Arguments

m1

The theoretical mean for the control group

std1

The theoretical variance for the control group

m2

The theoretical mean for the treatment group

std2

The theoretical variance for the treatment group

type

String identifying the distribution, 'n' for normal, 'ln' for lognormal, 'lap' for Laplace, 'g' for Gamma

Author

Barbara Kitchenham and Lech Madeyski

Examples

Run this code
RandomizedDesignEffectSizes(m1=0, std1=1, m2=1, std2=3, type = 'n')
#  ES Var     StdES      rPBS
#1  1   5 0.4472136 0.2182179
RandomizedDesignEffectSizes(m1=0, std1=1, m2=1, std2=3, type = 'l')
#        ES       Var     StdES        rPBS
#1 243.0432 242552663 0.0156056 0.007802562
 RandomizedDesignEffectSizes(m1=0, std1=1, m2=0.266, std2=1, type = 'l')
#          ES      Var     StdES       rPBS
# 1 0.5024232 6.310995 0.1999957 0.09950162

Run the code above in your browser using DataLab