as.data.frame(
calculate2GMdMRE(
mean=0, sd=1, N=10, reps=20, diff=c(0.2,0.5,0.8), type='n', seed=123,
StdAdj = 0, AlwaysTwoSidedTests=FALSE, LargeSampleSize=10000))
# Design Obs Diff CliffdMdMRE CentralPHatMdMRE StdESMdMRE varCliffd
# 1 2G_n 20 0.2 1.8866607 -0.3191790 1.3757827 0.06089579
# 2 2G_n 20 0.5 0.5956595 -0.3735555 0.5295375 0.04872737
# 3 2G_n 20 0.8 0.3077882 -0.4086031 0.3698596 0.03492526
# varPHat StdESVar ObsCliffd ObsPHat ObsStdES CliffdExpected PHatExpected
# 1 0.015223947 0.1666288 0.127 0.5635 0.2267731 0.1060074 0.5530037
# 2 0.012181842 0.1804443 0.283 0.6415 0.5386875 0.2694811 0.6347405
# 3 0.008731316 0.1978285 0.429 0.7145 0.8506020 0.4223684 0.7111842
# StdESExpected CliffdPower PHatPower StdESPower
# 1 0.1866728 0.10 0.10 0.1
# 2 0.4884736 0.15 0.15 0.2
# 3 0.7882317 0.50 0.50 0.6
#as.data.frame(
# calculate2GMdMRE(
# mean=0, sd=1, N=10, reps=100, diff=c(0.2,0.5,0.8), type='n', seed=123,
# StdAdj = 0, AlwaysTwoSidedTests=FALSE, LargeSampleSize=10000))
# Design Obs Diff CliffdMdMRE CentralPHatMdMRE StdESMdMRE varCliffd
#1 2G_n 20 0.2 1.9702583 -0.3144569 1.7111237 0.07552663
#2 2G_n 20 0.5 0.6428482 -0.3641988 0.6357666 0.06842711
#3 2G_n 20 0.8 0.4036555 -0.3803787 0.4063333 0.05873046
# varPHat StdESVar ObsCliffd ObsPHat ObsStdES CliffdExpected
#1 0.01888166 0.2522504 0.1092 0.5546 0.1835910 0.1030653
#2 0.01710678 0.2624379 0.2646 0.6323 0.4949159 0.2678275
#3 0.01468262 0.2787054 0.4078 0.7039 0.8062407 0.4211512
# PHatExpected StdESExpected CliffdPower PHatPower StdESPower
#1 0.5515327 0.1870328 0.09 0.12 0.10
#2 0.6339138 0.4869850 0.18 0.22 0.24
#3 0.7105756 0.7869372 0.44 0.52 0.56
Run the code above in your browser using DataLab