# output=rSimulations(mean=0,var=1,diff=0,r=0.25,N=4,reps=10000)
# reduced reps to pass CRAN time limits
output <- rSimulations(mean = 0, var = 1, diff = 0, r = 0.25, N = 4, reps = 1000)
output <- signif(output, 4)
output
# r.Mean r.Median Var.r PercentNegative Mean.VarProp Variance.VarProp ...
# 1 0.2132 0.3128 0.3126 34.21 0.5036 0.06046 ...
# output=rSimulations(mean=0,var=1,diff=0.8,r=0.25,N=60,reps=10000,returntSignificant=TRUE)
# reduced reps to pass CRAN time limits
output <- rSimulations(mean = 0, var = 1, diff = 0.8, r = 0.25, N = 60,
reps = 1000, returntSignificant = TRUE)
output <- signif(output, 4)
output
# r.Mean r.Median Var.r PercentNegative Mean.VarProp Variance.VarProp ...
# 1 0.2492 0.2534 0.01529 2.62 0.5009 0.003897 ...
output <- rSimulations(mean = 0, var = 1, diff = 0, r = 0.25, N = 30, reps = 10, returndata = TRUE)
output
# rvalues VarProp VarAccuracy VarDiffAccuracy tSig
# 1 0.3981111 0.4276398 0.8630528 0.6974386 0
# 2 0.2104742 0.4994285 0.7812448 0.8224174 0
# 3 0.4252424 0.4933579 1.1568545 0.8866058 0
# 4 0.3502651 0.6004373 0.8710482 0.7628923 0
# 5 0.3845145 0.6029086 0.9618363 0.7998859 0
# 6 0.1397217 0.4201069 1.1817022 1.3582855 0
# 7 0.2311455 0.3894894 0.8322239 0.8594886 0
# 8 0.3725047 0.5985897 1.1742117 0.9938662 0
# 9 0.4881618 0.2712268 0.7585261 0.5723671 0
# 10 0.1568071 0.3936400 0.9869924 1.1143561 0
Run the code above in your browser using DataLab