as.data.frame(
MetaAnalysisSimulations(
mean=0, sd=1, diff=0.5, GroupSize=10, type='n', Replications=5, Exp=5,
seed=456, alpha=0.05, FourGroup=FALSE, StdAdj=0, BlockEffect=0.5,
BlockStdAdj=0,StdExp=0,MAMethod='PM',returnES=FALSE))
# AverageCliffd AverageCliffdvar AverageCliffdsig Averagephat Averagephatvar
#1 0.3336 0.0132419 0.8 0.6668 0.003214756
#Averagephatsig AveMDStd AveMDStdvar AveMDStdsig MAMean.phat MAphat.var
#1 0.9 0.6176206 0.04278117 0.9 0.689908 0.003888047
#MAphat.sig MAMean.Cliffd MACliffd.var MACliffd.sig Mean.StdMDUnweighted
#1 0.9 0.37984 0.01575063 0.9 0.6449963
#StdMDUnweighted.var StdMDUnweighted.sig Mean.StdMDAdjUnweighted
#1 0.04299001 0.9 0.6145034
#StdMDAdjUnweighted.var StdMDAdjUnweighted.sig Mean.HedgesMA Hedges.var
#1 0.04192908 0.9 0.6150575 0.04455833
#Hedges.sig Mean.StdMDAdjMA.exact StdMDAdjMA.exact.var StdMDAdjMA.exact.sig
#1 0.9 0.5834754 0.05171067 0.8
#Mean.StdMDAdjMA.approx StdMDAdjMA.approx.var StdMDAdjMA.approx.sig
#1 0.58643 0.04749064 0.9
#Mean.StdMDMA.exact StdMDMA.exact.var StdMDMA.exact.sig Mean.StdMDMA.approx
#1 0.6134374 0.05711235 0.8 0.6165884
#StdMDMA.approx.var StdMDMA.approx.sig
#1 0.05242339 0.9
#as.data.frame(
# MetaAnalysisSimulations(
# mean=0, sd=1, diff=0.5, GroupSize=10, type='n', Replications=50, Exp=5,
# seed=456, alpha=0.05, FourGroup=FALSE, StdAdj=0, BlockEffect=0.5,
# BlockStdAdj=0,StdExp=0,MAMethod='PM',returnES=FALSE))
# AverageCliffd AverageCliffdvar AverageCliffdsig Averagephat Averagephatvar
#1 0.29808 0.01333744 0.74 0.64904 0.003236444
# Averagephatsig AveMDStd AveMDStdvar AveMDStdsig MAMean.phat MAphat.var
# 0.78 0.5450377 0.04217901 0.78 0.6677884 0.004538661
# MAphat.sig MAMean.Cliffd MACliffd.var MACliffd.sig Mean.StdMDUnweighted
#1 0.72 0.3356298 0.01833956 0.72 0.5686653
# StdMDUnweighted.var StdMDUnweighted.sig Mean.StdMDAdjUnweighted
#1 0.04237386 0.82 0.5419554
#StdMDAdjUnweighted.var StdMDAdjUnweighted.sig Mean.HedgesMA Hedges.var
# 0.04138573 0.78 0.5420552 0.04388383
# Hedges.sig Mean.StdMDAdjMA.exact StdMDAdjMA.exact.var StdMDAdjMA.exact.sig
#1 0.76 0.5163304 0.05874152 0.72
#Mean.StdMDAdjMA.approx StdMDAdjMA.approx.var StdMDAdjMA.approx.sig
#1 0.5203279 0.05591752 0.74
# Mean.StdMDMA.exact StdMDMA.exact.var
# 0.5418705 0.06468786
# StdMDMA.exact.sig Mean.StdMDMA.approx StdMDMA.approx.var StdMDMA.approx.sig
# 0.72 0.5461255 0.06159257 0.74
#as.data.frame(
# MetaAnalysisSimulations(
# mean=0, sd=1, diff=0.5, GroupSize=10, type='n', Replications=50, Exp=5,
# seed=456, alpha=0.05, FourGroup=TRUE, StdAdj=0, BlockEffect=0.5,
# BlockStdAdj=0, StdExp=0, MAMethod='PM', returnES=FALSE))
# AverageCliffd AverageCliffdvar AverageCliffdsig Averagephat ...
#1 0.27968 0.00683327 0.92 0.63984 ...
# as.data.frame(
# MetaAnalysisSimulations(
# mean=0, sd=1, diff=0.5, GroupSize=10, type='n', Replications=10, Exp=5,
# seed=456, alpha=0.05, FourGroup=TRUE, StdAdj=0, BlockEffect=0.5,
# BlockStdAdj=0, StdExp=0, MAMethod='PM', returnES=TRUE))
#Family NumExp GroupSize AveCliffd AveCliffdvar AveCliffdsig Avephat ...
# 1 1 5 10 0.252 0.007423693 TRUE ...
# Family NumExp GroupSize AveCliffd AveCliffdvar AveCliffdsig Avephat ...
#1 1 5 10 0.252 0.007423693 TRUE 0.626 ...
Run the code above in your browser using DataLab