as.data.frame(NP2GMetaAnalysisSimulation(mean=0,sd=1,diff=0.5,GroupSize=10,
Exp=5,type="n",StdAdj=0,alpha=0.05,seed=457,StdExp=1,MAMethod="PM",
returnES=FALSE))
# NumExp GroupSize AveCliffd AveCliffdvar AveCliffdsig Avephat Avephatvar Avephatsig AveMDStd..
# 5 10 0.252 0.01499003 TRUE 0.626 0.003645333 TRUE 0.4883188..
# AveMDStdsig MAphat MAphatvar MAphatsig MACliffd MACliffdvar MACliffdsig StdMDAdjUnweighted..
#1 TRUE 0.6288 0.003620188 TRUE 0.2575 0.01490134 TRUE 0.4748065..
# StdMDAdjUnweightedvar StdMDAdjUnweightedsig StdMDUnweighted StdMDUnweightedvar StdMDUnweight..
#1 0.04065614 TRUE 0.4980148 0.04157691 TRUE
# HedgesMA.Weighted HedgesMA.Weightedvar HedgesMA.Weightedsig StdMDAdjMAexact StdMDAdjMAexactvar
#1 0.4755316 0.04307274 TRUE 0.4725834 0.04315211
# StdMDAdjMAexactsig StdMDAdjMAapprox StdMDAdjMAapproxvar StdMDAdjMAapproxsig StdMDMAapprox St..
#1 TRUE 0.4716 0.03762363 TRUE 0.4955783 ..
# StdMDMAapproxsig StdMDMAexact StdMDMAexactvar StdMDMAexactsig
#1 TRUE 0.4966121 0.04756193 TRUE
as.data.frame(NP2GMetaAnalysisSimulation(mean=0,sd=1,diff=0.5,GroupSize=10,Exp=5,type="n",
StdAdj=0,alpha=0.05,seed=457,StdExp=1,MAMethod="PM",returnES=TRUE))
# MeanExp VarExp StdMD df tval t.sig Cliffd Cliffdvar Cliffd.sig PHat PHat..
#1 0.5641594 1.437447 0.4705502 17.77980 1.0521822 FALSE 0.26 0.08149818 FALSE 0.63 0.02..
#2 0.6400936 1.081352 0.6155452 17.23411 1.3764009 FALSE 0.36 0.06527192 FALSE 0.68 0.01..
#3 0.8199650 1.698610 0.6291418 15.42141 1.4068038 FALSE 0.28 0.07362909 FALSE 0.64 0.01..
#4 0.2970819 1.709441 0.2272214 13.87833 0.5080824 FALSE 0.04 0.07936485 FALSE 0.52 0.01..
#5 0.5688567 1.079082 0.5476154 16.79899 1.2245053 FALSE 0.32 0.07498667 FALSE 0.66 0.01..
# Phat.sig StdMDAdj StdMDAdjvar.exact StdMDAdjvar.approx StdMDvar.exact StdMDvar.approx
#1 FALSE 0.4503698 0.2129598 0.1884384 0.2324722 0.2057040
#2 FALSE 0.5882961 0.2182075 0.1918563 0.2388898 0.2100409
#3 FALSE 0.5979539 0.2211428 0.1911344 0.2448130 0.2115926
#4 FALSE 0.2146782 0.2105671 0.1800107 0.2358918 0.2016604
#5 FALSE 0.5227345 0.2162500 0.1896495 0.2373259 0.2081330
as.data.frame(NP2GMetaAnalysisSimulation(mean=0,sd=1,diff=0.724,GroupSize=10,Exp=5,type="l",
StdAdj=0,alpha=0.05,seed=123,StdExp=1,MAMethod="PM",returnES=FALSE))
# NumExp GroupSize AveCliffd AveCliffdvar AveCliffdsig Avephat Avephatvar Avephatsig AveMDSt..
#1 5 10 0.344 0.01288023 TRUE 0.672 0.003118222 TRUE 0.483665..
# AveMDStdsig MAphat MAphatvar MAphatsig MACliffd MACliffdvar MACliffdsig StdMDAdjUnweighted
#1 TRUE 0.7014 0.004229764 TRUE 0.403 0.01690867 TRUE 0.5722448
# StdMDAdjUnweightedvar StdMDAdjUnweightedsig StdMDUnweighted StdMDUnweightedvar StdMDUnweight..
#1 0.04146189 TRUE 0.6046947 0.04260837 TRUE
# HedgesMA.Weighted HedgesMA.Weightedvar HedgesMA.Weightedsig StdMDAdjMAexact StdMDAdjMAexactvar
#1 0.5742311 0.04453436 TRUE 0.5405307 0.0450343
# StdMDAdjMAexactsig StdMDAdjMAapprox StdMDAdjMAapproxvar StdMDAdjMAapproxsig StdMDMAapprox S..
#1 TRUE 0.5411 0.03819079 TRUE 0.5737401 0...
# StdMDMAapproxsig StdMDMAexact StdMDMAexactvar StdMDMAexactsig
#1 TRUE 0.5727409 0.05042801 TRUE
Run the code above in your browser using DataLab