set.seed(123)
as.data.frame(
simulateRandomizedBlockDesignEffectSizes(
mean = 0, sd = 1, diff = .5, N = 10, type = "n", alpha = 0.05,
Blockmean = 0.5, BlockStdAdj = 0, StdAdj = 0))
# N phat phat.var phat.df phat.test phat.pvalue phat.sig phat.ci.upper phat.ci.lower d
# 1 40 0.79 0.005866667 30.15715 3.786189 0.0003403047 TRUE 1 0.6600213 0.58
# vard d.sig d.ci.lower d.ci.upper cor sqse ctvar n1 n2 sigCVt sigCVn
# 1 0.02430788 TRUE 0.2775601 1 0.3052632 0.01315789 0.006953352 20 20 TRUE TRUE
# ttest.sig ES Variance StdES BlockEffect MedianDiff
# 1 TRUE 0.9402999 0.7829385 1.06268 0.307119 1.313642
set.seed(123)
as.data.frame(
simulateRandomizedBlockDesignEffectSizes(
mean = 0, sd = 1, diff = 0.5, N = 10, type = "n", alpha = 0.05,
Blockmean = 0.5, BlockStdAdj = 0, StdAdj = 0, AlwaysTwoSidedTests = TRUE)
)
# N phat phat.var phat.df phat.test phat.pvalue phat.sig phat.ci.upper phat.ci.lower
# 1 40 0.79 0.005866667 30.15715 3.786189 0.0006806094 TRUE 0.946392 0.633608
# d vard d.sig d.ci.lower d.ci.upper cor sqse ctvar n1 n2 sigCVt
# 1 0.58 0.02430788 TRUE 0.2135334 0.8033737 0.3052632 0.01315789 0.006953352 20 20 TRUE
# ttest.sig ES Variance StdES BlockEffect MedianDiff
# 1 TRUE 0.9402999 0.7829385 1.06268 0.307119 1.313642
set.seed(123)
as.data.frame(
simulateRandomizedBlockDesignEffectSizes(
mean = 0, sd = 1, diff = .5, N = 10, type = "l", alpha = 0.05,
Blockmean = 0.5, BlockStdAdj = 0, StdAdj = 0, ReturnData = TRUE))
# BaselineData.B1 AlternativeData.B1 transBaselineData.B1 transAlternativeData.B1
# 1 0.5709374 5.6073700 -0.56047565 1.72408180
# 2 0.7943926 2.3627208 -0.23017749 0.85981383
# 3 4.7526783 2.4615013 1.55870831 0.90077145
# 4 1.0730536 1.8416883 0.07050839 0.61068272
# 5 1.1380175 0.9456894 0.12928774 -0.05584113
# 6 5.5570366 9.8445021 1.71506499 2.28691314
# 7 1.5855260 2.7124451 0.46091621 0.99785048
# 8 0.2822220 0.2307046 -1.26506123 -1.46661716
# 9 0.5031571 3.3246217 -0.68685285 1.20135590
# 10 0.6404002 1.0275821 -0.44566197 0.02720859
# BaselineData.B2 AlternativeData.B2 transBaselineData.B2 transAlternativeData.B2
# 1 0.5667575 4.163950 -0.5678237 1.4264642
# 2 1.3258120 2.023702 0.2820251 0.7049285
# 3 0.5909615 6.653384 -0.5260044 1.8951257
# 4 0.7954150 6.541284 -0.2288912 1.8781335
# 5 0.8824622 6.181624 -0.1250393 1.8215811
# 6 0.3052289 5.412117 -1.1866933 1.6886403
# 7 3.8106015 4.729964 1.3377870 1.5539177
# 8 1.9220131 2.555092 0.6533731 0.9380883
# 9 0.5282757 2.001781 -0.6381369 0.6940373
# 10 5.7765980 1.858053 1.7538149 0.6195290
Run the code above in your browser using DataLab