if (FALSE) {
# single variable dataset
## You can pass in the outpu of a call to info
(out <- info('erdVHNchlamday'))
## Or, pass in a dataset id
(res <- griddap('erdVHNchlamday',
time = c('2015-04-01','2015-04-10'),
latitude = c(18, 21),
longitude = c(-120, -119)
))
# multi-variable dataset
(out <- info('erdQMekm14day'))
(res <- griddap(out,
time = c('2015-12-28','2016-01-01'),
latitude = c(24, 23),
longitude = c(88, 90)
))
(res <- griddap(out, time = c('2015-12-28','2016-01-01'),
latitude = c(24, 23), longitude = c(88, 90), fields = 'mod_current'))
(res <- griddap(out, time = c('2015-12-28','2016-01-01'),
latitude = c(24, 23), longitude = c(88, 90), fields = 'mod_current',
stride = c(1,2,1,2)))
(res <- griddap(out, time = c('2015-12-28','2016-01-01'),
latitude = c(24, 23), longitude = c(88, 90),
fields = c('mod_current','u_current')))
# Write to memory (within R), or to disk
(out <- info('erdQSwindmday'))
## disk, by default (to prevent bogging down system w/ large datasets)
## you can also pass in path and overwrite options to disk()
(res <- griddap(out,
time = c('2006-07-11','2006-07-20'),
longitude = c(166, 170),
store = disk()
))
## the 2nd call is much faster as it's mostly just the time of reading in
## the table from disk
system.time( griddap(out,
time = c('2006-07-11','2006-07-15'),
longitude = c(10, 15),
store = disk()
) )
system.time( griddap(out,
time = c('2006-07-11','2006-07-15'),
longitude = c(10, 15),
store = disk()
) )
## memory - you have to choose fmt="csv" if you use memory
(res <- griddap("erdMBchla1day",
time = c('2015-01-01','2015-01-03'),
latitude = c(14, 15),
longitude = c(125, 126),
fmt = "csv", store = memory()
))
## Use ncdf4 package to parse data
info("erdMBchla1day")
(res <- griddap("erdMBchla1day",
time = c('2015-01-01','2015-01-03'),
latitude = c(14, 15),
longitude = c(125, 126)
))
# Get data in csv format
## by default, we get netcdf format data
(res <- griddap('erdMBchla1day',
time = c('2015-01-01','2015-01-03'),
latitude = c(14, 15),
longitude = c(125, 126),
fmt = "csv"
))
# Use a different ERDDAP server url
## NOAA IOOS PacIOOS
url = "https://cwcgom.aoml.noaa.gov/erddap/"
out <- info("miamiacidification", url = url)
(res <- griddap(out,
time = c('2019-11-01','2019-11-03'),
latitude = c(15, 16),
longitude = c(-90, -88)
))
## pass directly into griddap() - if you pass a datasetid string directly
## you must pass in the url or you'll be querying the default ERDDAP url,
## which isn't the one you want if you're not using the default ERDDAP url
griddap("miamiacidification", url = url,
time = c('2019-11-01','2019-11-03'),
latitude = c(15, 16),
longitude = c(-90, -88)
)
# Using 'last'
## with time
griddap('erdVHNchlamday',
time = c('last-5','last'),
latitude = c(18, 21),
longitude = c(-120, -119)
)
## with latitude
griddap('erdVHNchlamday',
time = c('2015-04-01','2015-04-10'),
latitude = c('last', 'last'),
longitude = c(-120, -119)
)
## with longitude
griddap('erdVHNchlamday',
time = c('2015-04-01','2015-04-10'),
latitude = c(18, 21),
longitude = c('last', 'last')
)
# datasets without lat/lon grid and with fmt=nc
# FIXME: this dataset is gone
# (x <- info('glos_tds_5912_ca66_3f41'))
# res <- griddap(x,
# time = c('2018-04-01','2018-04-10'),
# ny = c(1, 2),
# nx = c(3, 5)
# )
## data.frame is empty
# res$data
## read in from the nc file path
# ncdf4::nc_open(res$summary$filename)
}
Run the code above in your browser using DataLab