# NOT RUN {
library(randomForest)
# For classification
data(iris)
iris$Species <- as.factor(iris$Species)
set.seed(1234)
( rf.mdl <- randomForest(iris[,1:4], iris[,"Species"], ntree=501) )
( rf.cv <- rf.crossValidation(rf.mdl, iris[,1:4], p=0.10, n=99, ntree=501) )
# Plot cross validation versus model producers accuracy
par(mfrow=c(1,2))
plot(rf.cv, type = "cv", main = "CV producers accuracy")
plot(rf.cv, type = "model", main = "Model producers accuracy")
# Plot cross validation versus model oob
par(mfrow=c(1,2))
plot(rf.cv, type = "cv", stat = "oob", main = "CV oob error")
plot(rf.cv, type = "model", stat = "oob", main = "Model oob error")
# For regression
data(airquality)
airquality <- na.omit(airquality)
rf.mdl <- randomForest(y=airquality[,"Ozone"], x=airquality[,2:4])
( rf.cv <- rf.crossValidation(rf.mdl, airquality[,2:4],
p=0.10, n=99, ntree=501) )
par(mfrow=c(2,2))
plot(rf.cv)
plot(rf.cv, stat = "mse")
plot(rf.cv, stat = "var.exp")
plot(rf.cv, stat = "mae")
# }
# NOT RUN {
# }
Run the code above in your browser using DataLab