if (FALSE) {
# what do issues mean, can print whole table
head(gbif_issues())
# or just name related issues
gbif_issues()[which(gbif_issues()$type %in% c("name")),]
# or search for matches
gbif_issues()[gbif_issues()$code %in% c('bbmn','clasna','scina'),]
# compare out data to after name_issues use
(aa <- name_usage(name = "Lupus"))
aa %>% name_issues("clasna")
## or parse issues in various ways
### remove data rows with certain issue classes
aa %>% name_issues(-clasna, -scina)
### expand issues to more descriptive names
aa %>% name_issues(mutate = "expand")
### split and expand
aa %>% name_issues(mutate = "split_expand")
### split, expand, and remove an issue class
aa %>% name_issues(-bbmn, mutate = "split_expand")
## Or you can use name_issues without %>%
name_issues(aa, -bbmn, mutate = "split_expand")
}
Run the code above in your browser using DataLab