Learn R Programming

rgeoda (version 0.1.0)

local_multiquantilelisa: Multivariate Quantile LISA Statistics

Description

The function to apply multivariate quantile LISA statistics

Usage

local_multiquantilelisa(
  w,
  df,
  k,
  q,
  permutations = 999,
  permutation_method = "complete",
  significance_cutoff = 0.05,
  cpu_threads = 6,
  seed = 123456789
)

Value

An instance of LISA-class

Arguments

w

An instance of Weight object

df

A data frame with selected variables only. E.g. guerry[c("TopCrm", "TopWealth", "TopLit")]

k

A vector of "k" values indicate the number of quantiles for each variable. Value range e.g. [1, 10]

q

A vector of "q" values indicate which quantile or interval for each variable used in local join count statistics. Value stars from 1.

permutations

(optional) The number of permutations for the LISA computation

permutation_method

(optional) The permutation method used for the LISA computation. Options are ('complete', 'lookup'). Default is 'complete'.

significance_cutoff

(optional) A cutoff value for significance p-values to filter not-significant clusters

cpu_threads

(optional) The number of cpu threads used for parallel LISA computation

seed

(optional) The seed for random number generator

Examples

Run this code
library(sf)
guerry_path <- system.file("extdata", "Guerry.shp", package = "rgeoda")
guerry <- st_read(guerry_path)
queen_w <- queen_weights(guerry)
lisa <- local_multiquantilelisa(queen_w, guerry[c("Crm_prp", "Litercy")],
k=c(4,4), q=c(1,1))
clsts <- lisa_clusters(lisa)
clsts

Run the code above in your browser using DataLab