function(population, fitnessFunction, stepNumber, evaluationNumber,
bestFitness, timeElapsed)
. They are used to decide when to restart a GP evolution run that
might be stuck in a local optimum. Evolution restart conditions are objects of the same
type and class as evolution stop conditions. They may be freely substituted for each other.
makeEmptyRestartCondition()
makeStepLimitRestartCondition(stepLimit = 10)
makeFitnessStagnationRestartCondition(fitnessHistorySize = 100, testFrequency = 10, fitnessStandardDeviationLimit = 1e-06)
makeFitnessDistributionRestartCondition(testFrequency = 100, fitnessStandardDeviationLimit = 1e-06)
makeStepLimitRestartCondition
.makeFitnessStagnationRestartCondition
.makeFitnessStagnationRestartCondition
.makeEmptyRestartCondition
creates a restart condition that is never fulfilled, i.e.
restarts will never occur.
makeStepLimitRestartCondition
creates a restart condition that holds if the
number if evolution steps is an integer multiple of a given step limit.
restarts will never occur.
makeFitnessStagnationRestartCondition
creates a restart strategy that holds if the
standard deviation of a last fitnessHistorySize
best fitness values falls below
a given fitnessStandardDeviationLimit
.
makeFitnessDistributionRestartCondition
creates a restart strategy that holds
if the standard deviation of the fitness values of the individuals in the current
population falls below a given fitnessStandardDeviationLimit
.