Learn R Programming

riskRegression (version 1.3.7)

qplot.predictCSC: Plot predictions from a Cause-specific Cox proportional hazard regression

Description

Plot predictions from a Cause-specific Cox proportional hazard regression

Usage

qplot.predictCSC(x, ci = FALSE, groupBy = "row", reduce.data = FALSE,
  plot = TRUE, conf.level = 0.95, digit = 2, ...)

Arguments

x

object obtained with the function predictCox.

ci

Logical. If TRUE display the confidence intervals for the predictions.

groupBy

The grouping factor used to color the prediction curves. Can be "row", "strata", or "covariates".

reduce.data

Logical. If TRUE only the covariates that does take indentical values for all observations are displayed.

plot

Logical. Should the graphic be plotted.

conf.level

confidence level of the interval.

digit

integer indicating the number of decimal places

...

not used. Only for compatibility with the plot method.

Examples

Run this code

## no strata
d <- sampleData(1e2, outcome = "competing.risks")
m.CSC <- CSC(Hist(time,event)~ X1 + X2 + X6, data = d)

pred.CSC <- predict(m.CSC, time = 1:5, cause = 1)
plot(pred.CSC)

pred.CSC <- predict(m.CSC, newdata = d[1:3,],
                    time = 1:5, cause = 1, se = TRUE, keep.newdata = TRUE)
plot(pred.CSC, groupBy = "covariates")

## strata
m.SCSC <- CSC(Hist(time,event)~ strata(X1) + strata(X2) + X6,
data = d)
pred.SCSC <- predict(m.SCSC, time = 1:3,
cause = 1, se = TRUE, keep.newdata = TRUE, keep.strata = TRUE)
plot(pred.SCSC)
plot(pred.SCSC, groupBy = "strata")

Run the code above in your browser using DataLab