library(prodlim)
library(survival)
library(cmprsk)
library(lava)
d <- prodlim::SimCompRisk(100)
f1 <- FGR(Hist(time,cause)~X1+X2,data=d)
print(f1)
## crr allows that some covariates are multiplied by
## a function of time (see argument tf of crr)
## by FGR uses the identity matrix
f2 <- FGR(Hist(time,cause)~cov2(X1)+X2,data=d)
print(f2)
## same thing, but more explicit:
f3 <- FGR(Hist(time,cause)~cov2(X1)+cov1(X2),data=d)
print(f3)
## both variables can enter cov2:
f4 <- FGR(Hist(time,cause)~cov2(X1)+cov2(X2),data=d)
print(f4)
## change the function of time
qFun <- function(x){x^2}
noFun <- function(x){x}
sqFun <- function(x){x^0.5}
## multiply X1 by time^2 and X2 by time:
f5 <- FGR(Hist(time,cause)~cov2(X1,tf=qFun)+cov2(X2),data=d)
print(f5)
print(f5$crrFit)
## same results as crr
with(d,crr(ftime=time,
fstatus=cause,
cov2=d[,c("X1","X2")],
tf=function(time){cbind(qFun(time),time)}))
## still same result, but more explicit
f5a <- FGR(Hist(time,cause)~cov2(X1,tf=qFun)+cov2(X2,tf=noFun),data=d)
f5a$crrFit
## multiply X1 by time^2 and X2 by sqrt(time)
f5b <- FGR(Hist(time,cause)~cov2(X1,tf=qFun)+cov2(X2,tf=sqFun),data=d,cause=1)
## additional arguments for crr
f6<- FGR(Hist(time,cause)~X1+X2,data=d, cause=1,gtol=1e-5)
f6
f6a<- FGR(Hist(time,cause)~X1+X2,data=d, cause=1,gtol=0.1)
f6a
Run the code above in your browser using DataLab