plotProportionBar
creates bar plots comparing the
cross-category proportion. plotProportionDot
creates dot plots.
plotClusterProportions
has variable pre-specified and calls the dot
plot. plotProportion
produces a combination of both bar plots and dot
plot.
Having package "ggrepel" installed can help adding tidier percentage annotation on the pie chart.
plotProportion(
object,
class1 = NULL,
class2 = "dataset",
method = c("stack", "group", "pie"),
...
)plotProportionDot(
object,
class1 = NULL,
class2 = "dataset",
showLegend = FALSE,
panelBorder = TRUE,
...
)
plotProportionBar(
object,
class1 = NULL,
class2 = "dataset",
method = c("stack", "group"),
inclRev = FALSE,
panelBorder = TRUE,
combinePlot = TRUE,
...
)
plotClusterProportions(object, useCluster = NULL, return.plot = FALSE, ...)
plotProportionPie(
object,
class1 = NULL,
class2 = "dataset",
labelSize = 4,
labelColor = "white",
...
)
ggplot or list of ggplot
A liger object.
Each should be a single name of a categorical variable
available in cellMeta
slot. Number of cells in each categories in
class2
will be served as the denominator when calculating proportions.
By default class1 = NULL
and uses default clusters and class2 =
"dataset"
.
For bar plot, choose whether to draw "stack"
or
"group"
bar plot. Default "stack"
.
ggplot theme setting arguments passed to
.ggplotLigerTheme
.
Logical, for barplot, whether to reverse the specification for
class1
and class2
and produce two plots. Default FALSE
.
Logical, whether to combine the two plots with
plot_grid
when two plots are created. Default
TRUE
.
For plotClusterProportions
. Same as class1
while class2
is hardcoded with "dataset"
.
defuncted.
Settings on pie chart percentage label. Default
4
and "white"
.
plotProportion(pbmcPlot)
plotProportionBar(pbmcPlot, method = "group")
plotProportionPie(pbmcPlot)
Run the code above in your browser using DataLab