n <- 1000 # define sample size
set.seed(17) # so can reproduce the results
age <- rnorm(n, 50, 10)
blood.pressure <- rnorm(n, 120, 15)
cholesterol <- rnorm(n, 200, 25)
sex <- factor(sample(c('female','male'), n,TRUE))
label(age) <- 'Age' # label is in Hmisc
label(cholesterol) <- 'Total Cholesterol'
label(blood.pressure) <- 'Systolic Blood Pressure'
label(sex) <- 'Sex'
units(cholesterol) <- 'mg/dl' # uses units.default in Hmisc
units(blood.pressure) <- 'mmHg'
# Specify population model for log odds that Y=1
L <- .4*(sex=='male') + .045*(age-50) +
(log(cholesterol - 10)-5.2)*(-2*(sex=='female') + 2*(sex=='male'))
# Simulate binary y to have Prob(y=1) = 1/[1+exp(-L)]
y <- ifelse(runif(n) < plogis(L), 1, 0)
ddist <- datadist(age, blood.pressure, cholesterol, sex)
options(datadist='ddist')
fit <- lrm(y ~ blood.pressure + sex * (age + rcs(cholesterol,4)),
x=TRUE, y=TRUE)
p <- Predict(fit, age, cholesterol, sex, np=50) # vary sex last
bplot(p) # image plot for age, cholesterol with color
# coming from yhat; use default ranges for
# both continuous predictors; two panels (for sex)
bplot(p, lfun=wireframe) # same as bplot(p,,wireframe)
# View from different angle, change y label orientation accordingly
# Default is z=40, x=-60
bplot(p,, wireframe, screen=list(z=40, x=-75), ylabrot=-25)
bplot(p,, contourplot) # contour plot
bounds <- perimeter(age, cholesterol, lowess=TRUE)
plot(age, cholesterol) # show bivariate data density and perimeter
lines(bounds[,c('x','ymin')]); lines(bounds[,c('x','ymax')])
p <- Predict(fit, age, cholesterol) # use only one sex
bplot(p, perim=bounds) # draws image() plot
# don't show estimates where data are sparse
# doesn't make sense here since vars don't interact
bplot(p, plogis(yhat) ~ age*cholesterol) # Probability scale
options(datadist=NULL)
Run the code above in your browser using DataLab