Learn R Programming

rms (version 5.1-0)

ExProb: Function Generator For Exceedance Probabilities

Description

For an orm object generates a function for computing the estimates of the function Prob(Y>=y) given one or more values of the linear predictor using the reference (median) intercept. This function can optionally be evaluated at only a set of user-specified y values, otherwise a right-step function is returned. There is a plot method for plotting the step functions, and if more than one linear predictor was evaluated multiple step functions are drawn. ExProb is especially useful for nomogram.

Usage

ExProb(object, ...)
"ExProb"(object, codes = FALSE, ...)
"plot"(x, ..., data=NULL, xlim=NULL, xlab=x$yname, ylab=expression(Prob(Y>=y)), col=par('col'), col.vert='gray85', pch=20, pch.data=21, lwd=par('lwd'), lwd.data=lwd, lty.data=2, key=TRUE)

Arguments

object
a fit object from orm
codes
if TRUE, ExProb use the integer codes $1,2,\ldots,k$ for the $k$-level response instead of its original unique values
...
ignored for ExProb. Passed to plot for plot.ExProb
data
Specify data if you want to add stratified empirical probabilities to the graph. If data is a numeric vector, it is assumed that no groups are present. Otherwise data must be a list or data frame where the first variable is the grouping variable (corresponding to what made the linear predictor vary) and the second variable is the data vector for the y variable. The rows of data should be sorted to be in order of the linear predictor argument.
x
an object created by running the function created by ExProb
xlim
limits for x-axis; default is range of observed y
xlab
x-axis label
ylab
y-axis label
col
color for horizontal lines and points
col.vert
color for vertical discontinuities
pch
plotting symbol for predicted curves
lwd
line width for predicted curves
pch.data,lwd.data,lty.data
plotting parameters for data
key
set to FALSE to suppress key in plot if data is given

Value

ExProb returns an R function. Running the function returns an object of class "ExProb".

See Also

orm, Quantile.orm

Examples

Run this code
set.seed(1)
x1 <- runif(200)
yvar <- x1 + runif(200)
f <- orm(yvar ~ x1)
d <- ExProb(f)
lp <- predict(f, newdata=data.frame(x1=c(.2,.8)))
w <- d(lp)
s1 <- abs(x1 - .2) < .1
s2 <- abs(x1 - .8) < .1
plot(w, data=data.frame(x1=c(rep(.2, sum(s1)), rep(.8, sum(s2))),
                        yvar=c(yvar[s1], yvar[s2])))

qu <- Quantile(f)
abline(h=c(.1,.5), col='gray80')
abline(v=qu(.5, lp), col='gray80')
abline(v=qu(.9, lp), col='green')

Run the code above in your browser using DataLab