Learn R Programming

rms (version 5.1-0)

lrm.fit: Logistic Model Fitter

Description

Fits a binary or ordinal logistic model for a given design matrix and response vector with no missing values in either. Ordinary or penalized maximum likelihood estimation is used.

Usage

lrm.fit(x, y, offset=0, initial, est, maxit=12, eps=.025, tol=1e-7, trace=FALSE, penalty.matrix=NULL, weights=NULL, normwt=FALSE, scale=FALSE)

Arguments

x
design matrix with no column for an intercept
y
response vector, numeric, categorical, or character
offset
optional numeric vector containing an offset on the logit scale
initial
vector of initial parameter estimates, beginning with the intercept
est
indexes of x to fit in the model (default is all columns of x). Specifying est=c(1,2,5) causes columns 1,2, and 5 to have parameters estimated. The score vector u and covariance matrix var can be used to obtain score statistics for other columns
maxit
maximum no. iterations (default=12). Specifying maxit=1 causes logist to compute statistics at initial estimates.
eps
difference in $-2 log$ likelihood for declaring convergence. Default is .025. If the $-2 log$ likelihood gets worse by eps/10 while the maximum absolute first derivative of $-2 log$ likelihood is below 1e-9, convergence is still declared. This handles the case where the initial estimates are MLEs, to prevent endless step-halving.
tol
Singularity criterion. Default is 1e-7
trace
set to TRUE to print -2 log likelihood, step-halving fraction, change in -2 log likelihood, maximum absolute value of first derivative, and vector of first derivatives at each iteration.
penalty.matrix
a self-contained ready-to-use penalty matrix - see lrm
weights
a vector (same length as y) of possibly fractional case weights
normwt
set to TRUE to scale weights so they sum to the length of y; useful for sample surveys as opposed to the default of frequency weighting
scale
set to TRUE to subtract column means and divide by column standard deviations of x before fitting, and to back-solve for the un-normalized covariance matrix and regresion coefficients. This can sometimes make the model converge for very large sample sizes where for example spline or polynomial component variables create scaling problems leading to loss of precision when accumulating sums of squares and crossproducts.

Value

a list with the following components:

See Also

lrm, glm, matinv, solvet, cr.setup, gIndex

Examples

Run this code
#Fit an additive logistic model containing numeric predictors age, 
#blood.pressure, and sex, assumed to be already properly coded and 
#transformed
#
# fit <- lrm.fit(cbind(age,blood.pressure,sex), death)

Run the code above in your browser using DataLab