# NOT RUN {
suppressWarnings(RNGversion("3.5.0"))
set.seed(1)
ftime <- 10*rexp(200)
stroke <- ifelse(ftime > 10, 0, 1)
ftime <- pmin(ftime, 10)
units(ftime) <- "Month"
age <- rnorm(200, 70, 10)
hospital <- factor(sample(c('a','b'),200,TRUE))
dd <- datadist(age, hospital)
options(datadist="dd")
f <- bj(Surv(ftime, stroke) ~ rcs(age,5) + hospital, x=TRUE, y=TRUE)
# add link="identity" to use a censored normal regression model instead
# of a lognormal one
anova(f)
fastbw(f)
validate(f, B=15)
plot(Predict(f, age, hospital))
# needs datadist since no explicit age,hosp.
coef(f) # look at regression coefficients
coef(psm(Surv(ftime, stroke) ~ rcs(age,5) + hospital, dist='lognormal'))
# compare with coefficients from likelihood-based
# log-normal regression model
# use dist='gau' not under R
r <- resid(f, 'censored.normalized')
survplot(npsurv(r ~ 1), conf='none')
# plot Kaplan-Meier estimate of
# survival function of standardized residuals
survplot(npsurv(r ~ cut2(age, g=2)), conf='none')
# may desire both strata to be n(0,1)
options(datadist=NULL)
# }
Run the code above in your browser using DataLab