# NOT RUN {
# Simulate data from a population model in which the log hazard
# function is linear in age and there is no age x sex interaction
n <- 1000
set.seed(731)
age <- 50 + 12*rnorm(n)
label(age) <- "Age"
sex <- factor(sample(c('Male','Female'), n,
rep=TRUE, prob=c(.6, .4)))
cens <- 15*runif(n)
h <- .02*exp(.04*(age-50)+.8*(sex=='Female'))
dt <- -log(runif(n))/h
label(dt) <- 'Follow-up Time'
e <- ifelse(dt <= cens,1,0)
dt <- pmin(dt, cens)
units(dt) <- "Year"
dd <- datadist(age, sex)
options(datadist='dd')
S <- Surv(dt,e)
f <- cph(S ~ rcs(age,4) + sex, x=TRUE, y=TRUE)
cox.zph(f, "rank") # tests of PH
anova(f)
ggplot(Predict(f, age, sex)) # plot age effect, 2 curves for 2 sexes
survplot(f, sex) # time on x-axis, curves for x2
res <- resid(f, "scaledsch")
time <- as.numeric(dimnames(res)[[1]])
z <- loess(res[,4] ~ time, span=0.50) # residuals for sex
plot(time, fitted(z))
lines(supsmu(time, res[,4]),lty=2)
plot(cox.zph(f,"identity")) #Easier approach for last few lines
# latex(f)
f <- cph(S ~ age + strat(sex), surv=TRUE)
g <- Survival(f) # g is a function
g(seq(.1,1,by=.1), stratum="sex=Male", type="poly") #could use stratum=2
med <- Quantile(f)
plot(Predict(f, age, fun=function(x) med(lp=x))) #plot median survival
# Fit a model that is quadratic in age, interacting with sex as strata
# Compare standard errors of linear predictor values with those from
# coxph
# Use more stringent convergence criteria to match with coxph
f <- cph(S ~ pol(age,2)*strat(sex), x=TRUE, eps=1e-9, iter.max=20)
coef(f)
se <- predict(f, se.fit=TRUE)$se.fit
require(lattice)
xyplot(se ~ age | sex, main='From cph')
a <- c(30,50,70)
comb <- data.frame(age=rep(a, each=2),
sex=rep(levels(sex), 3))
p <- predict(f, comb, se.fit=TRUE)
comb$yhat <- p$linear.predictors
comb$se <- p$se.fit
z <- qnorm(.975)
comb$lower <- p$linear.predictors - z*p$se.fit
comb$upper <- p$linear.predictors + z*p$se.fit
comb
age2 <- age^2
f2 <- coxph(S ~ (age + age2)*strata(sex))
coef(f2)
se <- predict(f2, se.fit=TRUE)$se.fit
xyplot(se ~ age | sex, main='From coxph')
comb <- data.frame(age=rep(a, each=2), age2=rep(a, each=2)^2,
sex=rep(levels(sex), 3))
p <- predict(f2, newdata=comb, se.fit=TRUE)
comb$yhat <- p$fit
comb$se <- p$se.fit
comb$lower <- p$fit - z*p$se.fit
comb$upper <- p$fit + z*p$se.fit
comb
# g <- cph(Surv(hospital.charges) ~ age, surv=TRUE)
# Cox model very useful for analyzing highly skewed data, censored or not
# m <- Mean(g)
# m(0) # Predicted mean charge for reference age
#Fit a time-dependent covariable representing the instantaneous effect
#of an intervening non-fatal event
rm(age)
set.seed(121)
dframe <- data.frame(failure.time=1:10, event=rep(0:1,5),
ie.time=c(NA,1.5,2.5,NA,3,4,NA,5,5,5),
age=sample(40:80,10,rep=TRUE))
z <- ie.setup(dframe$failure.time, dframe$event, dframe$ie.time)
S <- z$S
ie.status <- z$ie.status
attach(dframe[z$subs,]) # replicates all variables
f <- cph(S ~ age + ie.status, x=TRUE, y=TRUE)
#Must use x=TRUE,y=TRUE to get survival curves with time-dep. covariables
#Get estimated survival curve for a 50-year old who has an intervening
#non-fatal event at 5 days
new <- data.frame(S=Surv(c(0,5), c(5,999), c(FALSE,FALSE)), age=rep(50,2),
ie.status=c(0,1))
g <- survfit(f, new)
plot(c(0,g$time), c(1,g$surv[,2]), type='s',
xlab='Days', ylab='Survival Prob.')
# Not certain about what columns represent in g$surv for survival5
# but appears to be for different ie.status
#or:
#g <- survest(f, new)
#plot(g$time, g$surv, type='s', xlab='Days', ylab='Survival Prob.')
#Compare with estimates when there is no intervening event
new2 <- data.frame(S=Surv(c(0,5), c(5, 999), c(FALSE,FALSE)), age=rep(50,2),
ie.status=c(0,0))
g2 <- survfit(f, new2)
lines(c(0,g2$time), c(1,g2$surv[,2]), type='s', lty=2)
#or:
#g2 <- survest(f, new2)
#lines(g2$time, g2$surv, type='s', lty=2)
detach("dframe[z$subs, ]")
options(datadist=NULL)
# }
Run the code above in your browser using DataLab