# NOT RUN {
require(survival)
# fit a Kaplan-Meier and plot it
fit <- npsurv(Surv(time, status) ~ x, data = aml)
plot(fit, lty = 2:3)
legend(100, .8, c("Maintained", "Nonmaintained"), lty = 2:3)
# Here is the data set from Turnbull
# There are no interval censored subjects, only left-censored (status=3),
# right-censored (status 0) and observed events (status 1)
#
# Time
# 1 2 3 4
# Type of observation
# death 12 6 2 3
# losses 3 2 0 3
# late entry 2 4 2 5
#
tdata <- data.frame(time = c(1,1,1,2,2,2,3,3,3,4,4,4),
status = rep(c(1,0,2),4),
n = c(12,3,2,6,2,4,2,0,2,3,3,5))
fit <- npsurv(Surv(time, time, status, type='interval') ~ 1,
data=tdata, weights=n)
#
# Time to progression/death for patients with monoclonal gammopathy
# Competing risk curves (cumulative incidence)
# status variable must be a factor with first level denoting right censoring
m <- upData(mgus1, stop = stop / 365.25, units=c(stop='years'),
labels=c(stop='Follow-up Time'), subset=start == 0)
f <- npsurv(Surv(stop, event) ~ 1, data=m)
# CI curves are always plotted from 0 upwards, rather than 1 down
plot(f, fun='event', xmax=20, mark.time=FALSE,
col=2:3, xlab="Years post diagnosis of MGUS")
text(10, .4, "Competing Risk: death", col=3)
text(16, .15,"Competing Risk: progression", col=2)
# Use survplot for enhanced displays of cumulative incidence curves for
# competing risks
survplot(f, state='pcm', n.risk=TRUE, xlim=c(0, 20), ylim=c(0, .5), col=2)
survplot(f, state='death', add=TRUE, col=3)
f <- npsurv(Surv(stop, event) ~ sex, data=m)
survplot(f, state='death', n.risk=TRUE, conf='diffbands')
# }
Run the code above in your browser using DataLab