set.seed(1)
n <- 100
x1 <- rnorm(n)
x2 <- rnorm(n)
x3 <- rnorm(n)
yo <- x1 + x2 + rnorm(n) / 2.
# Minimally group y so that bootstrap samples are very unlikely to miss a
# value of y
y <- ordGroupBoot(yo)
d <- data.frame(x1, x2, x3, y)
dd <- datadist(d); options(datadist='dd')
f <- ols(y ~ pol(x1, 2) * pol(x2, 2) + x3,
data=d, x=TRUE, y=TRUE)
plot(anova(f), what='proportion R2', pl=FALSE)
rexVar(f)
g <- bootcov(f, B=20, coef.reps=TRUE)
rexVar(g, data=d)
f <- orm(y ~ pol(x1,2) * pol(x2, 2) + x3,
data=d, x=TRUE, y=TRUE)
rexVar(f, data=d)
g <- bootcov(f, B=20, coef.reps=TRUE)
rexVar(g, data=d)
if (FALSE) {
require(rmsb)
h <- blrm(y ~ pol(x1,2) * pol(x2, 2) + x3, data=d)
rexVar(h, data=d)
}
options(datadist=NULL)
Run the code above in your browser using DataLab