set.seed(1)
d <- expand.grid(x1=c('a', 'b', 'c'), x2=c('A','B'), x3=1:2, irep=1:20)
y <- sample(1:10, nrow(d), TRUE)
dd <- datadist(d); options(datadist='dd')
f <- orm(y ~ x1 + x2 + x3, data=d)
survplot(f, x1='a')
survplot(f, x1='a', conf.int=.95)
survplot(f, x1=c('a','b'), x2='A')
survplot(f, x1=c('a', 'b'), x2='A', conf.int=.95)
survplot(f, x1=c('a','b'), x2='A', facet=TRUE)
survplot(f, x1=c('a','b'), x2='A', facet=TRUE, conf.int=.95)
survplot(f, x1=c('a', 'b'), x2=c('A', 'B'))
survplot(f, x1=c('a', 'b'), x2=c('A', 'B'), conf.int=.95)
survplot(f, x1=c('a', 'b'), x2=c('A', 'B'), facet=TRUE)
survplot(f, x1=c('a', 'b'), x2=c('A', 'B'), x3=1:2)
g <- psm(Surv(y) ~ x1 + x2 + x3, data=d)
survplot(g, x1=c('a','b'), x2=c('A', 'B'), ggplot=TRUE) # calls survplot.orm
# See https://hbiostat.org/rmsc/parsurv#sec-parsurv-assess
# where nonparametric and parametric estimates are combined into one ggplot
options(datadist=NULL)
Run the code above in your browser using DataLab