Learn R Programming

rmsb (version 1.1-2)

Bayesian Regression Modeling Strategies

Description

A Bayesian companion to the 'rms' package, 'rmsb' provides Bayesian model fitting, post-fit estimation, and graphics. It implements Bayesian regression models whose fit objects can be processed by 'rms' functions such as 'contrast()', 'summary()', 'Predict()', 'nomogram()', and 'latex()'. The fitting function currently implemented in the package is 'blrm()' for Bayesian logistic binary and ordinal regression with optional clustering, censoring, and departures from the proportional odds assumption using the partial proportional odds model of Peterson and Harrell (1990) .

Copy Link

Version

Install

install.packages('rmsb')

Monthly Downloads

1,112

Version

1.1-2

License

GPL (>= 3)

Maintainer

Frank Harrell Jr

Last Published

April 13th, 2025

Functions in rmsb (1.1-2)

HPDint

Highest Posterior Density Interval
print.predict.blrm

Print Predictions for blrm()
plot.PostF

Plot Posterior Density of PostF
pdensityContour

Bivariate Posterior Contour
getParamCoef

Get a Bayesian Parameter Vector Summary
distSym

Distribution Symmetry Measure
rmsb-package

The 'rmsb' package.
stackMI

Bayesian Model Fitting and Stacking for Multiple Imputation
cluster

cluster
stanDx

Print Stan Diagnostics
print.blrm

Print blrm() Results
print.blrmStats

Print Details for blrmStats Predictive Accuracy Measures
selectedQr

QR Decomposition Preserving Selected Columns
vcov.rmsb

Variance-Covariance Matrix
tauFetch

Fetch Partial Proportional Odds Parameters
print.rmsb

Basic Print for Bayesian Parameter Summary
Mean.blrm

Function Generator for Mean Y for blrm()
PostF

Function Generator for Posterior Probabilities of Assertions
plot.rmsb

Plot Posterior Densities and Summaries
predict.blrm

Make predictions from a blrm() fit
stanDxplot

Diagnostic Trace Plots
stanGet

Get Stan Output
coef.rmsb

Extract Bayesian Summary of Coefficients
ExProb.blrm

Function Generator for Exceedance Probabilities for blrm()
blrmStats

Compute Indexes of Predictive Accuracy and Their Uncertainties
compareBmods

Compare Bayesian Model Fits
Quantile.blrm

Function Generator for Quantiles of Y for blrm()
blrm

Bayesian Binary and Ordinal Logistic Regression