# NOT RUN {
# UNIVARIATE FUNCTIONAL BOXPLOT - NO ADJUSTMENT
set.seed(1)
N = 2 * 100 + 1
P = 2e2
grid = seq( 0, 1, length.out = P )
D = 10 * matrix( sin( 2 * pi * grid ), nrow = N, ncol = P, byrow = TRUE )
D = D + rexp(N, rate = 0.05)
# c( 0, 1 : (( N - 1 )/2), -( ( ( N - 1 ) / 2 ) : 1 ) )^4
fD = fData( grid, D )
dev.new()
oldpar <- par(mfrow = c(1, 1))
par(mfrow = c(1, 3))
plot( fD, lwd = 2, main = 'Functional dataset',
xlab = 'time', ylab = 'values' )
fbplot( fD, main = 'Functional boxplot', xlab = 'time', ylab = 'values', Fvalue = 1.5 )
boxplot(fD$values[,1], ylim = range(fD$values), main = 'Boxplot of functional dataset at t_0 ' )
par(oldpar)
# UNIVARIATE FUNCTIONAL BOXPLOT - WITH ADJUSTMENT
set.seed( 161803 )
P = 2e2
grid = seq( 0, 1, length.out = P )
N = 1e2
# Generating a univariate synthetic gaussian dataset
Data = generate_gauss_fdata( N, centerline = sin( 2 * pi * grid ),
Cov = exp_cov_function( grid,
alpha = 0.3,
beta = 0.4 ) )
fD = fData( grid, Data )
dev.new()
# }
# NOT RUN {
fbplot( fD, adjust = list( N_trials = 10,
trial_size = 5 * N,
VERBOSE = TRUE ),
xlab = 'time', ylab = 'Values',
main = 'My adjusted functional boxplot' )
# }
# NOT RUN {
# MULTIVARIATE FUNCTIONAL BOXPLOT - NO ADJUSTMENT
set.seed( 1618033 )
P = 1e2
N = 1e2
L = 2
grid = seq( 0, 1, length.out = 1e2 )
C1 = exp_cov_function( grid, alpha = 0.3, beta = 0.4 )
C2 = exp_cov_function( grid, alpha = 0.3, beta = 0.4 )
# Generating a bivariate functional dataset of gaussian data with partially
# correlated components
Data = generate_gauss_mfdata( N, L,
centerline = matrix( sin( 2 * pi * grid ),
nrow = 2, ncol = P,
byrow = TRUE ),
correlations = rep( 0.5, 1 ),
listCov = list( C1, C2 ) )
mfD = mfData( grid, Data )
dev.new()
fbplot( mfD, Fvalue = 2.5, xlab = 'time', ylab = list( 'Values 1',
'Values 2' ),
main = list( 'First component', 'Second component' ) )
# }
Run the code above in your browser using DataLab