# NOT RUN {
set.seed(1618)
N <- 200
P <- 200
N_extra <- 4
grid <- seq(0, 1, length.out = P)
Cov <- exp_cov_function(grid, alpha = 0.2, beta = 0.8)
Data <- generate_gauss_fdata(
N = N,
centerline = sin(4 * pi * grid),
Cov = Cov
)
Data_extra <- array(0, dim = c(N_extra, P))
Data_extra[1, ] <- generate_gauss_fdata(
N = 1,
centerline = sin(4 * pi * grid + pi / 2),
Cov = Cov
)
Data_extra[2, ] <- generate_gauss_fdata(
N = 1,
centerline = sin(4 * pi * grid - pi / 2),
Cov = Cov
)
Data_extra[3, ] <- generate_gauss_fdata(
N = 1,
centerline = sin(4 * pi * grid + pi / 3),
Cov = Cov
)
Data_extra[4, ] <- generate_gauss_fdata(
N = 1,
centerline = sin(4 * pi * grid - pi / 3),
Cov = Cov
)
Data <- rbind(Data, Data_extra)
fD <- fData(grid, Data)
# Outliergram with default Fvalue = 1.5
outliergram(fD, display = TRUE)
# Outliergram with Fvalue enforced to 2.5
outliergram(fD, Fvalue = 2.5, display = TRUE)
# }
# NOT RUN {
# Outliergram with estimated Fvalue to ensure TPR of 1%
outliergram(
fData = fD,
adjust = list(
N_trials = 10,
trial_size = 5 * nrow(Data),
TPR = 0.01,
VERBOSE = FALSE
),
display = TRUE
)
# }
# NOT RUN {
# }
Run the code above in your browser using DataLab