# NOT RUN {
N = 1e2
P = 1e3
t0 = 0
t1 = 1
# Defining the measurement grid
grid = seq( t0, t1, length.out = P )
# Generating an exponential covariance matrix to be used in the simulation of
# the functional datasets (see the related help for details)
C = exp_cov_function( grid, alpha = 0.3, beta = 0.4 )
# Simulating the measurements of two univariate functional datasets with
# required center and covariance function
Data_1 = generate_gauss_fdata( N, centerline = sin( 2 * pi * grid ), Cov = C )
Data_2 = generate_gauss_fdata( N, centerline = sin( 2 * pi * grid ), Cov = C )
# Building the mfData object and plotting tt
plot( mfData( grid, list( Data_1, Data_2 ) ),
xlab = 'time', ylab = list( '1st dim.', '2nd dim.' ),
main = list( 'An important plot here', 'And another one here' ) )
# }
Run the code above in your browser using DataLab