Learn R Programming

robCompositions (version 2.4.1)

biplot.pcaCoDa: Biplot method

Description

Provides robust compositional biplots.

Usage

# S3 method for pcaCoDa
biplot(x, y, ..., choices = 1:2)

Value

The robust compositional biplot.

Arguments

x

object of class ‘pcaCoDa’

y

...

...

arguments passed to plot methods

choices

selection of two principal components by number. Default: c(1,2)

Author

M. Templ, K. Hron

Details

The robust compositional biplot according to Aitchison and Greenacre (2002), computed from (robust) loadings and scores resulting from pcaCoDa, is performed.

References

Aitchison, J. and Greenacre, M. (2002). Biplots of compositional data. Applied Statistics, 51, 375-392. \

Filzmoser, P., Hron, K., Reimann, C. (2009) Principal component analysis for compositional data with outliers. Environmetrics, 20 (6), 621--632.

See Also

pcaCoDa, plot.pcaCoDa

Examples

Run this code

data(coffee)
p1 <- pcaCoDa(coffee[,-1])
p1
plot(p1, which = 2, choices = 1:2)

# exemplarly, showing the first and third PC
a <- p1$princompOutputClr
biplot(a, choices = c(1,3))


## with labels for the scores:
data(arcticLake)
rownames(arcticLake) <- paste(sample(letters[1:26], nrow(arcticLake), replace=TRUE), 
                              1:nrow(arcticLake), sep="")
pc <- pcaCoDa(arcticLake, method="classical")
plot(pc, xlabs=rownames(arcticLake), which = 2)
plot(pc, xlabs=rownames(arcticLake), which = 3)

Run the code above in your browser using DataLab