"loggammarob"
ObjectsSummary method for R object of class "loggammarob"
and
print
method for the summary object.
# S3 method for loggammarob
summary(object, p = NULL, conf.level = 0.95,
prob = 1e-05, ...)
# S3 method for summary.loggammarob
print(x, digits = max(3, getOption("digits") - 3), ...)
an R object of class loggammarob
, typically created by
loggammarob
.
numeric. Values in the interval [0,1]. Quantile orders for which point estimation and confidence interval are require.
numeric. A scalar or a vector of length 4+length(p)
. This is
the confidence level used to construct confidence intervals for the
four parameters mu
, sigma
, lambda
and
eta
and for the quantiles.
numeric. Value in the interval [0,1]. This is used to determine the interval of numerical integration in the evaluation of the asymptotic variance and covariance matrix. See details below.
an R object of class summary.loggammarob
, typically
resulting from summary(loggammarob(..),..)
.
number of digits for printing, see digits
in
options
.
potentially more arguments passed to methods.
An object of class summary.loggammarob
. A list that includes the
following components:
standard error for the mu
estimate.
standard error for the sigma
estimate.
standard error for the lambda
estimate.
standard error for the eta
estimate.
confidence iterval for the mu
parameter.
confidence iterval for the sigma
parameter.
confidence iterval for the lambda
parameter.
confidence iterval for the eta
parameter.
If p is not NULL then
quantiles estimate.
standard error for the require quantiles estimate.
confidence iterval for the require quantiles parameter.
The prob
argument determines the interval of the numerical
integration in the evaluation of the asymptotic variance and
covariance matrix with the following code
qloggamma(p=prob/2,lambda=lambda)
for the lower limit and
qloggamma(p=1-prob/2,lambda=lambda)
for the upper limit. Here
lambda
is the estimate.
C. Agostinelli, A. Marazzi and V.J. Yohai (2015). Robust estimates of the generalized loggamma distribution. Technometrics, Volume 56, Issue 1, 2014. doi:10.1080/00401706.2013.818578
Agostinelli C., Marazzi A., Yohai V.J., Randriamiharisoa A. (2016). Robust Estimation of the Generalized Loggamma Model: The R Package robustloggamma. Journal of Statistical Software, 70(7), 1-21. doi:10.18637/jss.v070.i07
# NOT RUN {
set.seed(1234)
x <- rloggamma(n=50, lambda=1)
res <- loggammarob(x, control=loggammarob.control(lower=0, upper=2, n=30))
summary(res)
# }
Run the code above in your browser using DataLab