Learn R Programming

Title: rpf

Why use RPF?

The idea behind RPF is modularity. Most item factor analysis software is not modular. Modularity facilitates more contributors and cross pollination between projects.

Installation

To get the current released version from CRAN:

install.packages("rpf")

Developer notes

There are a number of useful scripts in the tools subdir:

  • install -- Installs the package as quickly as possible. Skips building the vignettes and documentation.

  • build -- Builds a source tarball

  • check -- Builds a source tarball and checks it

  • rox -- Re-generates the documentation.

  • test -- Runs the test suite using the uninstalled tests against the installed package.

  • autodep -- Recalculates the header file dependences

If you're working on the C++ code, you probably want to adjust the settings in src/Makevars.

Copy Link

Version

Install

install.packages('rpf')

Monthly Downloads

17,806

Version

1.0.14

License

GPL (>= 3)

Issues

Pull Requests

Stars

Forks

Maintainer

Last Published

August 21st, 2023

Functions in rpf (1.0.14)

observedSumScore

Compute the observed sum-score
crosstabTest

Monte-Carlo test for cross-tabulation tables
logit

Transform from [0,1] to the reals
expandDataFrame

Expand summary table of patterns and frequencies
multinomialFit

Multinomial fit test
fromFactorLoading

Convert factor loadings to response function slopes
omitItems

Omit the given items
itemOutcomeBySumScore

Produce an item outcome by observed sum-score table
kct

Knox Cube Test dataset
fromFactorThreshold

Convert factor thresholds to response function intercepts
Class rpf.1dim

The base class for 1 dimensional response probability functions.
ordinal.gamma

Compute the ordinal gamma association statistic
read.flexmirt

Read a flexMIRT PRM file
Class rpf.1dim.gpcmp

Unidimensional generalized partial credit monotonic polynomial.
omitMostMissing

Omit items with the most missing data
orderCompletely

Order a data.frame by missingness and all columns
Class rpf.1dim.graded

The base class for 1 dimensional graded response probability functions.
Class rpf.1dim.lmp

Unidimensional logistic function of a monotonic polynomial.
Class rpf.base

The base class for response probability functions.
rpf.1dim.fit

Calculate item and person Rasch fit statistics
rpf.dTheta

Item derivatives with respect to the location in the latent space
Class rpf.1dim.grm

The unidimensional graded response item model.
Class rpf.1dim.grmp

Unidimensional graded response monotonic polynomial.
Class rpf.1dim.drm

Unidimensional dichotomous item models (1PL, 2PL, and 3PL).
ptw2011.gof.test

Compute the P value that the observed and expected tables come from the same distribution
rpf.dLL

Item parameter derivatives
rpf.drm

Create a dichotomous response model
rpf.mcm

Create a multiple-choice response model
rpf.grm

Create a graded response model
rpf.1dim.moment

Calculate cell central moments
rpf.gpcmp

Create monotonic polynomial generalized partial credit (GPC-MP) model
rpf.grmp

Create monotonic polynomial graded response (GR-MP) model
rpf.id_of

Convert an rpf item model name to an ID
Class rpf.mdim.graded

The base class for multi-dimensional graded response probability functions.
Class rpf.mdim.drm

Multidimensional dichotomous item models (M1PL, M2PL, and M3PL).
rpf.numParam

Length of the item parameter vector
rpf.mean.info

Find the point where an item provides mean maximum information
rpf.nrm

Create a nominal response model
rpf.lmp

Create logistic function of a monotonic polynomial (LMP) model
Class rpf.mdim.nrm

The nominal response item model (both unidimensional and multidimensional models have the same parameterization).
rpf.logprob

Map an item model, item parameters, and person trait score into a probability vector
Class rpf.mdim

The base class for multi-dimensional response probability functions.
rpf.info

Map an item model, item parameters, and person trait score into a information vector
rpf.rescale

Rescale item parameters
rpf.rparam

Generates item parameters
Class rpf.mdim.grm

The multidimensional graded response item model.
Class rpf.mdim.mcm

The multiple-choice response item model (both unidimensional and multidimensional models have the same parameterization).
rpf.1dim.residual

Calculate residuals
rpf.1dim.stdresidual

Calculate standardized residuals
rpf.sample

Randomly sample response patterns given a list of items
science

Liking for Science dataset
toFactorLoading

Convert response function slopes to factor loadings
rpf.numSpec

Length of the item model vector
rpf.ogive

The ogive constant
rpf.paramInfo

Retrieve a description of the given parameter
write.flexmirt

Write a flexMIRT PRM file
rpf.mean.info1

Find the point where an item provides mean maximum information
rpf.prob

Map an item model, item parameters, and person trait score into a probability vector
toFactorThreshold

Convert response function intercepts to factor thresholds
stripData

Strip data and scores from an IFA group
sumScoreEAP

Compute the sum-score EAP table
An introduction

rpf - Response Probability Functions
rpf.modify

Create a similar item specification with the given number of factors
sumScoreEAPTest

Conduct the sum-score EAP distribution test
tabulateRows

Tabulate data.frame rows
as.IFAgroup

Convert an OpenMx MxModel object into an IFA group
ChenThissen1997

Computes local dependence indices for all pairs of items
SitemFit

Compute the S fit statistic for a set of items
LSAT7

Description of LSAT7 data
EAPscores

Compute Expected A Posteriori (EAP) scores
collapseCategoricalCells

Collapse small sample size categorical frequency counts
compressDataFrame

Compress a data frame into unique rows and frequencies
SitemFit1

Compute the S fit statistic for 1 item
bestToOmit

Identify the columns with most missing data
LSAT6

Description of LSAT6 data