# NOT RUN {
searchplos(q='ecology', fl=c('id','publication_date'), limit = 2)
searchplos('ecology', fl=c('id','publication_date'), limit = 2)
searchplos('ecology', c('id','title'), limit = 2)
# Get only full article DOIs
out <- searchplos(q="*:*", fl='id', fq='doc_type:full', start=0, limit=250)
head(out$data)
# Get DOIs for only PLoS One articles
out <- searchplos(q="*:*", fl='id', fq='journal_key:PLoSONE', start=0, limit=15)
out$data
# Get DOIs for full article in PLoS One
out <- searchplos(q="*:*", fl='id', fq=list('journal_key:PLoSONE',
'doc_type:full'), limit=50)
out$data
# Serch for many q
q <- c('ecology','evolution','science')
lapply(q, function(x) searchplos(x, limit=2))
# Query to get some PLOS article-level metrics, notice difference between two outputs
out <- searchplos(q="*:*", fl=c('id','counter_total_all','alm_twitterCount'),fq='doc_type:full')
out_sorted <- searchplos(q="*:*", fl=c('id','counter_total_all','alm_twitterCount'),
fq='doc_type:full', sort='counter_total_all desc')
out$data
out_sorted$data
# Show me all articles that have these two words less then about 15 words apart.
searchplos(q='everything:"sports alcohol"~15', fl='title', fq='doc_type:full')
# Now let's try to narrow our results to 7 words apart. Here I'm changing the ~15 to ~7
searchplos(q='everything:"sports alcohol"~7', fl='title', fq='doc_type:full')
# A list of articles about social networks that are popular on a social network
searchplos(q="*:*",fl=c('id','alm_twitterCount'),
fq=list('doc_type:full','subject:"Social networks"','alm_twitterCount:[100 TO 10000]'),
sort='counter_total_month desc')
# Now, lets also only look at articles that have seen some activity on twitter.
# Add "fq=alm_twitterCount:[1 TO *]" as a parameter within the fq argument.
searchplos(q='everything:"sports alcohol"~7', fl=c('alm_twitterCount','title'),
fq=list('doc_type:full','alm_twitterCount:[1 TO *]'))
searchplos(q='everything:"sports alcohol"~7', fl=c('alm_twitterCount','title'),
fq=list('doc_type:full','alm_twitterCount:[1 TO *]'),
sort='counter_total_month desc')
# Return partial doc parts
## Return Abstracts only
out <- searchplos(q='*:*', fl=c('doc_partial_body','doc_partial_parent_id'),
fq=list('doc_type:partial', 'doc_partial_type:Abstract'), limit=3)
## Return Title's only
out <- searchplos(q='*:*', fl=c('doc_partial_body','doc_partial_parent_id'),
fq=list('doc_type:partial', 'doc_partial_type:Title'), limit=3)
# Remove DOIs for annotations (i.e., corrections)
searchplos(q='*:*', fl=c('id','article_type'),
fq='-article_type:correction', limit=100)
# Remove DOIs for annotations (i.e., corrections) and Viewpoints articles
searchplos(q='*:*', fl=c('id','article_type'),
fq=list('-article_type:correction','-article_type:viewpoints'), limit=100)
# Get eissn codes
searchplos(q='*:*', fl=c('id','journal','eissn','cross_published_journal_eissn'),
fq="doc_type:full", limit = 60)
searchplos(q='*:*', fl=c('id','journal','eissn','cross_published_journal_eissn'),
limit = 2000)
# }
Run the code above in your browser using DataLab