Learn R Programming

rpm (version 0.7-3)

summary.rpm: Summarizing rpm Model Fits

Description

[base::summary()] method for [rpm()] fits.

Usage

# S3 method for rpm
summary(
  object,
  ...,
  digits = max(3, getOption("digits") - 3),
  correlation = FALSE,
  covariance = FALSE,
  include.single = TRUE
)

# S3 method for summary.rpm print( x, digits = max(3, getOption("digits") - 3), correlation = FALSE, covariance = FALSE, signif.stars = getOption("show.signif.stars"), eps.Pvalue = 1e-04, print.header = TRUE, print.formula = FALSE, print.fitinfo = TRUE, print.coefmat = TRUE, print.message = TRUE, print.deviances = TRUE, print.drop = TRUE, ... )

Value

The function [summary.rpm()] computes and returns a list of summary statistics of the fitted [rpm()] model given in `object`. Note that for backwards compatibility, it returns the coefficient table.

The returned object is a list of class "summary.rpm" with the following elements:

formula

ERGM model formula

digits

the 'digits' inputted to <summary.rpm> or the default value (despite the fact the digits will be 5)

correlation, covariance

whether to print correlation/covariance matrices of the estimated parameters

iterations

object$iterations

control

the [control.rpm()] object used

samplesize

MCMC sample size

message

optional message on the validity of the standard error estimates

aic.null,bic.null

values of AIC and BIC for the null model

aic, bic

values of AIC and BIC

coefficients

data frames with model parameters and associated statistics

asycov

asymptotic covariance matrix

asyse

asymptotic standard error matrix

offset, drop, estimate, iterations, mle.lik, null.lik

see documentation of the object returned by [rpm()]

Arguments

object

an object of class rpm, usually, a result of a call to [rpm()].

...

For [summary.rpm()] additional arguments are passed to [logLik.rpm()]. For [print.summary.rpm()], to [stats::printCoefmat()].

digits

significant digits for coefficients. The default is max(3, getOption("digits")-3).

correlation

logical whether the correlation matrix of the estimated parameters should be printed (T or F); default=FALSE

covariance

logical whether the covariance matrix of the estimated parameters should be printed (T or F); default=FALSE

include.single

logical; if `TRUE`, include in the summary table the coefficients of the log-odds of being single for each category of women and men.

x

object of class `summary.rpm` returned by [summary.rpm()].

signif.stars

whether to print dots and stars to signify statistical significance. See [print.summary.lm()].

eps.Pvalue

\(p\)-values below this level will be printed as "<`eps.Pvalue`".

print.formula, print.fitinfo, print.coefmat, print.message, print.deviances, print.drop, print.header

which components of the fit summary to print.

Details

[summary.rpm()] tries to be smart about formatting the coefficients, standard errors, etc.

The default printout of the summary object contains the call, number of iterations used, null and residual deviances, and the values of AIC and BIC. The coefficient table contains the following columns:

- `Estimate`, `Std. Error` - parameter estimates and their standard errors - `z value`, `Pr(>|z|)` - z-test and p-values

See Also

The model fitting function [rpm()], [print.rpm()], and [base::summary()]. Function [stats::coef()] will extract the data frame of coefficients with standard errors, t-statistics and p-values.

Examples

Run this code
library(rpm)
data(fauxmatching)
# \donttest{
fit <- rpm(~match("edu") + WtoM_diff("edu",3),
          Xdata=fauxmatching$Xdata, Zdata=fauxmatching$Zdata,
          X_w="X_w", Z_w="Z_w",
          pair_w="pair_w", pair_id="pair_id", Xid="pid", Zid="pid",
          sampled="sampled",sampling_design="stock-flow")
summary(fit)
# }

Run the code above in your browser using DataLab