Learn R Programming

rqPen (version 2.3)

rqPen-package: Penalized quantile regression for LASSO, SCAD, and MCP penalty functions including group penalties

Description

This package provides functions to find solutions to penalized quantile regression problems. Throughout this package, the estimated coefficients are the minimizers of the penalized quantile regression objective function: $$\beta = \frac{1}{n}\sum_{i=1}^{n} \rho_{\tau}(y_i - x_i^T \beta) + \sum_{j=1}^{p} p_{\lambda}(|\beta_{j}|)$$, where $$\rho_{\tau}(u) = u(\tau - I(u < 0))$$. This package can handle three different penalty functions with \(\lambda > 0\):

LASSO: $$p_{\lambda}(|\beta_j|) = \lambda|\beta_j|$$

SCAD: $$p_{\lambda}(|\beta_j|) = \lambda|\beta_j|I(0\leq |\beta_j| < \lambda) + \frac{a\lambda|\beta_j|-(\beta_j^2+\lambda^2)/2}{a-1}I(\lambda \leq |\beta_j| \leq a\lambda) + \frac{(a+1)\lambda^2}{2}I(|\beta_j| > a\lambda),$$ for \(a > 2\)

MCP: $$p_{\lambda}(|\beta_j|) = \lambda(|\beta_j|-\frac{\beta_{j}^2}{2a\lambda})I(0 \leq |\beta_j| \leq a\lambda) + \frac{a\lambda^2}{2}I(|\beta_j| > a\lambda),$$ for \(a > 1\).

Arguments