if (FALSE) {
x <- matrix(runif(800),ncol=8)
y <- 1 + x[,1] + x[,8] + (1+.5*x[,3])*rnorm(100)
r1 <- rq.pen.cv(x,y) #lasso fit for median
# Elastic net fit for multiple values of a and tau
r2 <- rq.pen.cv(x,y,penalty="ENet",a=c(0,.5,1),tau=c(.25,.5,.75))
#same as above but more weight given to median when calculating group cross validation error.
r3 <- rq.pen.cv(x,y,penalty="ENet",a=c(0,.5,1),tau=c(.25,.5,.75),tauWeights=c(.25,.5,.25))
# uses median cross-validation error instead of mean.
r4 <- rq.pen.cv(x,y,cvSummary=median)
#Cross-validation with no penalty on the first variable.
r5 <- rq.pen.cv(x,y,penalty.factor=c(0,rep(1,7)))
}
Run the code above in your browser using DataLab