Learn R Programming

rrcov (version 1.5-5)

Appalachia: Annual maximum streamflow in central Appalachia

Description

The data on annual maximum streamflow at 104 gaging stations in the central Appalachia region of the United States contains the sample L-moments ratios (L-CV, L-skewness and L-kurtosis) as used by Hosking and Wallis (1997) to illustrate regional freqency analysis (RFA).

Usage

data(Appalachia)

Arguments

Format

A data frame with 104 observations on the following 3 variables:

L-CV

L-coefficient of variation

L-skewness

L-coefficient of skewness

L-kurtosis

L-coefficient of kurtosis

Details

The sample L-moment ratios (L-CV, L-skewness and L-kurtosis) of a site are regarded as a point in three dimensional space.

References

Neykov, N.M., Neytchev, P.N., Van Gelder, P.H.A.J.M. and Todorov V. (2007), Robust detection of discordant sites in regional frequency analysis, Water Resources Research, 43, W06417, doi:10.1029/2006WR005322

Examples

Run this code
# NOT RUN {
    data(Appalachia)

    # plot a matrix of scatterplots
    pairs(Appalachia,
          main="Appalachia data set",
          pch=21,
          bg=c("red", "green3", "blue"))

    mcd<-CovMcd(Appalachia)
    mcd
    plot(mcd, which="dist", class=TRUE)
    plot(mcd, which="dd", class=TRUE)

    ##  identify the discordant sites using robust distances and compare 
    ##  to the classical ones
    mcd <- CovMcd(Appalachia)
    rd <- sqrt(getDistance(mcd))
    ccov <- CovClassic(Appalachia)
    cd <- sqrt(getDistance(ccov))
    r.out <- which(rd > sqrt(qchisq(0.975,3)))
    c.out <- which(cd > sqrt(qchisq(0.975,3)))
    cat("Robust: ", length(r.out), " outliers: ", r.out,"\n")
    cat("Classical: ", length(c.out), " outliers: ", c.out,"\n")
# }

Run the code above in your browser using DataLab