# NOT RUN {
## PCA of the Hawkins Bradu Kass's Artificial Data
## using all 4 variables
data(hbk)
pca <- PcaCov(hbk)
pca
## Compare with the classical PCA
prcomp(hbk)
## or
PcaClassic(hbk)
## If you want to print the scores too, use
print(pca, print.x=TRUE)
## Using the formula interface
PcaCov(~., data=hbk)
## To plot the results:
plot(pca) # distance plot
pca2 <- PcaCov(hbk, k=2)
plot(pca2) # PCA diagnostic plot (or outlier map)
## Use the standard plots available for for prcomp and princomp
screeplot(pca)
biplot(pca)
# }
Run the code above in your browser using DataLab