Learn R Programming

rrcov (version 1.7-6)

ionosphere: Johns Hopkins University Ionosphere database.

Description

''This radar data was collected by a system in Goose Bay, Labrador. This system consists of a phased array of 16 high-frequency antennas with a total transmitted power on the order of 6.4 kilowatts. The targets were free electrons in the ionosphere. "good" radar returns are those showing evidence of some type of structure in the ionosphere. "bad" returns are those that do not; their signals pass through the ionosphere. Received signals were processed using an autocorrelation function whose arguments are the time of a pulse and the pulse number. There were 17 described by 2 attributes per pulse number, corresponding to the complex values returned by the function resulting from the complex electromagnetic signal.'' [UCI archive]

Usage

data(ionosphere)

Arguments

Format

A data frame with 351 rows and 33 variables: 32 measurements and one (the last, Class) grouping variable: 225 'good' and 126 'bad'.

The original dataset at UCI contains 351 rows and 35 columns. The first 34 columns are features, the last column contains the classification label of 'g' and 'b'. The first feature is binary and the second one is only 0s, one grouping variable - factor with labels 'good' and 'bad'.

References

Sigillito, V. G., Wing, S. P., Hutton, L. V., and Baker, K. B. (1989). Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest, 10, 262-266.

Examples

Run this code
 data(ionosphere)
 ionosphere[, 1:6] |> pairs()

Run the code above in your browser using DataLab