data(va3way)
ct <- 2
x <- va3way[ct,,]/1000000
plot(colnames(x), x[1,], ylim=c(min(x), max(x)), type="n", ylab="Manufacturing Value
Added in million USD", xlab="Years")
for(i in 1:nrow(x))
lines(colnames(x), x[i,], col=i)
legend("topleft", legend=rownames(x), col=1:nrow(x), lwd=1)
title(paste("Coutnry: ", rownames(va3way[,,1])[ct]))
## Treat quickly and dirty the zeros in the data set (if any)
## in order to be able to perform ilr transformation:
va3way[va3way==0] <- 0.001
res <- Tucker3(va3way)
##
## Not yet a print function
##
print(res$fit)
print(res$A)
## Print the core matrix
print(res$GA)
## Distance-distance plot
plot(res, which="dd", main="Distance-distance plot")
## Paired component plot, mode A
plot(res, which="comp", main="Paired component plot (mode A)")
## Paired component plot, mode B
plot(res, which="comp", mode="B", main="Paired component plot (mode B)")
## Joint biplot
plot(res, which="jbplot", main="Joint biplot")
## Trajectory
plot(res, which="tjplot", main="Trajectory biplot")
Run the code above in your browser using DataLab