Computes a robust multivariate location and scatter estimate with a high breakdown point for incomplete data, using one of the available estimators.
CovNARobust(x, control, impMeth=c("norm" , "seq", "rseq"))
An object derived from a CovRobust
object, depending on the selected estimator.
a matrix or data frame.
a control object (S4) for one of the available control classes,
e.g. CovControlMcd-class
, CovControlOgk-class
,
CovControlSest-class
, etc.,
containing estimation options. The class of this object defines
which estimator will be used. Alternatively a character string can be specified
which names the estimator - one of auto, sde, mcd, ogk, m, mve, sfast, surreal,
bisquare, rocke. If 'auto' is specified or the argument is missing, the
function will select the estimator (see below for details)
select imputation method to use - choose one of "norm" , "seq" or "rseq". The default is "norm"
Valentin Todorov valentin.todorov@chello.at
This function is based on imputation and than estimation with a selected high breakdown point method.
Thus first imputation with the selected method will be performed and then the function CovRobust
will be called.
For details see CovRobust
.
V. Todorov, M. Templ and P. Filzmoser. Detection of multivariate outliers in business survey data with incomplete information. Advances in Data Analysis and Classification, 5 37--56, 2011.
Todorov V & Filzmoser P (2009), An Object Oriented Framework for Robust Multivariate Analysis. Journal of Statistical Software, 32(3), 1--47. <doi:10.18637/jss.v032.i03>.
data(bush10)
CovNARobust(bush10)
CovNARobust(bush10, CovControlSest())
Run the code above in your browser using DataLab