# \donttest{
library(broom)
library(dplyr)
library(purrr)
library(tibble)
library(tidyr)
# ------------------------------------------------------------------------------
lm_est <- function(split, ...) {
lm(mpg ~ disp + hp, data = analysis(split)) %>%
tidy()
}
set.seed(52156)
car_rs <-
bootstraps(mtcars, 500, apparent = TRUE) %>%
mutate(results = map(splits, lm_est))
int_pctl(car_rs, results)
int_t(car_rs, results)
int_bca(car_rs, results, .fn = lm_est)
# ------------------------------------------------------------------------------
# putting results into a tidy format
rank_corr <- function(split) {
dat <- analysis(split)
tibble(
term = "corr",
estimate = cor(dat$sqft, dat$price, method = "spearman"),
# don't know the analytical std.error so no t-intervals
std.error = NA_real_
)
}
set.seed(69325)
data(Sacramento, package = "modeldata")
bootstraps(Sacramento, 1000, apparent = TRUE) %>%
mutate(correlations = map(splits, rank_corr)) %>%
int_pctl(correlations)
# ------------------------------------------------------------------------------
# An example of computing the interval for each value of a custom grouping
# factor (type of house in this example)
# Get regression estimates for each house type
lm_est <- function(split, ...) {
analysis(split) %>%
tidyr::nest(.by = c(type)) %>%
# Compute regression estimates for each house type
mutate(
betas = purrr::map(data, ~ lm(log10(price) ~ sqft, data = .x) %>% tidy())
) %>%
# Convert the column name to begin with a period
rename(.type = type) %>%
select(.type, betas) %>%
unnest(cols = betas)
}
set.seed(52156)
house_rs <-
bootstraps(Sacramento, 1000, apparent = TRUE) %>%
mutate(results = map(splits, lm_est))
int_pctl(house_rs, results)
# }
Run the code above in your browser using DataLab